Statistically compare two models using a paired t-test and bootstrap samples of the assessment results
Source:R/micer.R
miceCompare.Rd
Statistically compare two models using a paired t-test and bootstrap samples of the assessment results
Arguments
- ref
column of reference labels as factor data type.
- result1
column of predicted labels as factor data type (first result to compare).
- result2
column of predicted labels as factor data type (second result to compare).
- reps
number of bootstrap replicates to use. Default is 200.
- frac
proportion of samples to include in each bootstrap sample. Default is 0.7.
Value
paired t-test results including t-statistic, degrees of freedom, p-value, 95% confidence interval, and mean difference
Examples
data(compareData)
compareResult <- miceCompare(ref=compareData$ref,
result1=compareData$rfPred,
result2=compareData$dtPred,
reps=1000,
frac=.7)
print(compareResult)
#>
#> Paired t-test
#>
#> data: resultsDF$mice1 and resultsDF$mice2
#> t = 257.71, df = 999, p-value < 2.2e-16
#> alternative hypothesis: true mean difference is not equal to 0
#> 95 percent confidence interval:
#> 0.1067377 0.1083757
#> sample estimates:
#> mean difference
#> 0.1075567
#>