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Spatial Statistics
GIScience

Presenter Notes
Presentation Notes
This module will provide an introduction to spatial statistics. My goal here is to provide a broad overview of how we summarize and visualize data and also offer a conceptual introduction to spatial statistical methods.This is simply an introduction. If you are interested in spatial statistics, I would suggest taking a full spatial statistics course. This skillset is very valuable for anyone wanting to work with and analyze spatial data and spatial patterns. 
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1. Occurs over a map surface

2. Spatial heterogeneity/spatial autocorrelation

3. Temporal heterogeneity/temporal autocorrelation

4. Modifiable areal unit problem

What is unique about geographic data?
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Presenter Notes
Presentation Notes
Unique concerns arise when we want to explore and analyze spatial data statistically. First, they occur over a map space, so issues of spatial heterogeneity and spatial autocorrelation arise, which can make it difficult to apply traditional statistical methods that assume samples are independent of one another. Although this issue is not necessarily unique to spatial data, there can also be issues with temporal heterogeneity and autocorrelation. As mentioned in previous modules, the scale of the data aggregation can impact the analysis results, which we term the Modifiable Areal Unit Problem or MAUP.



Exploring Your Data
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Data Distribution: Histograms
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Presenter Notes
Presentation Notes
We will begin with a discussion of visualizing and describing a single variable graphically or statistically. Note that we are not making use of the spatial information here. This only relies on the tabulated data. Histograms are one means to explore the distribution of a single variable and are an example of a univariate graph.The x-axis represents the attribute or quantity of interest, and the y axis will be the frequency or count. Data ranges are binned and the number of samples within each data range are counted. This allows us to visualize the distribution of the data to assess central tendency, dispersion, skewness, or the presence of outliers. How the data are binned can have a large impact on how patterns are observed. Smaller bins tend to highlight more local patterns whereas larger bins will represent a generalized pattern. There is not necessarily a correct bin width. This depends on the patterns of interest and the data being graphed. 



Data Distributions: Kernel Density Plots
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Presenter Notes
Presentation Notes
Similar to histograms, kernel density plots are used to show the distribution of a single variable, or are univariate graphs. The x-axis will be the variable of interest and the y-axis will be density, count, or frequency. The curves are created using a kernel density function. Peaks indicate common values and troughs indicate less frequent values. You can also use these graphs to compare data distributions for different categories, as shown in the example graph.Since histograms and kernel density plots are showing the same patterns and can have the same axes, they can be plotted in the same graph space. The kernel density function can be adjusted to show more local or generalized patterns, similar to changing the bin width for histograms. 



Population Mean = μ = ( Σ Xi ) / N

Sample Mean = x_bar = ( Σ xi ) / n

Median = Most middle number, 50% percentile, 2nd quartile

Mode = Most common number

Measures of Central Tendency
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Presenter Notes
Presentation Notes
Several statistics are available to describe the central tendency of a continuous variable. The mean or average is calculated by summing all the samples then dividing by the number of samples. The mean for a population can be approximated using the mean calculated from a sample of that population. The median represents the most middle number, the 50% percentile, or the 2nd quartile. 50% or half of the values will be lower than it and 50% will be larger than it. The mode is the most commonly occurring value. The mean tends to be impacted by outliers or extremely large or small values. So, if this is an issue in a dataset, the median is sometimes used as opposed to the mean to describe central tendency. 



Range = Maximum – Minimum

Population Variance: = σ2 = Σ ( Xi – μ )2 / N

Sample Variance = s2 = Σ ( xi – x_bar )2 / ( n – 1 )

Population Standard Deviation = σ = sqrt[ Σ ( Xi – μ )2 / N ]

Sample Standard Deviation = s = sqrt [ Σ ( xi – x_bar )2 / ( n – 1 ) ]

Measure of Dispersion or Variability
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Presenter Notes
Presentation Notes
Central tendency only explains one component of your data. It is also important to describe the variability or dispersion of the data. This can be done using a variety of measures. For example, you can calculate the largest value in the dataset as the maximum and the smallest as the minimum. Subtracting the minimum value from the maximum value will yield the range. You can calculate population variance (σ2) or approximate is using sample variance (s2). For population variance, the mean is subtracted from each value. These differences are then squared, summed, and divided by the number of features. Note that variance will be reported in the square of the units of the variable. For example, if concentration data are measured in parts per million (ppm), then the units of the variance would be ppm2.The population standard deviation (σ) is simply the square root of the variance. Taking the square root will return the original units of measurement for the variable. Larger standard deviations suggest that the data are more dispersed or variable. The population standard deviation can be approximated from a sample as the sample standard deviation (s).



Minimum = lowest value

Maximum = highest value

1st Quartile = 25% of data 
below, 75% above

3rd Quartile = 75% of data 
below, 25% above

Interquartile Range (IQR) = 
range of values between 1st and 
3rd quartile

Box Plot
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Presenter Notes
Presentation Notes
Another useful tool for describing data distribution is the box plot. Using this method, we graph the median, 1st quartile, 3rd quartile, minimum, and maximum values as defined and shown on the slide. Note that the mean is generally not included on the boxplot.The 1st quartile is defined as the value for which 25% of the data are below it and 75% are above. In contrast, the 3rd quartile has 75% of the data below it and 25% above. The difference between the 3rd and 1st quartile is called the interquartile range or IQR. You can also graph outliers as points. The definition of outliers can vary; however, one commonly used criteria is that large values that are more than 1.5 IQR from the 3rd quartile and small values that are more than 1.5 IQR from the 1st quartile are outliers. Similar to histograms and kernel density plots, boxplots can also be useful in visually assessing the central tendency, dispersion, and normality of your data. 



Box Plot
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Presenter Notes
Presentation Notes
Boxplots can be used to compare groups.For example, the first graph shown here compares the central tendency and variability in stream runoff by month. The second graph compares gas mileage based on the number of engine cylinders. 



Box Plot
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Presenter Notes
Presentation Notes
Here is another example. In this example, the normalized difference vegetation index, or NDVI, is compared for different land cover types. 



Relationships Between Variables: Scatterplot
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Presenter Notes
Presentation Notes
Now we will move on to bivariate or multivariate graphs in which more than one variable is shown, generally to allow for comparisons. A common example is the scatterplot. Scatterplots allow you to explore the relationship or correlation between two variables, one plotted to the x-axis and the other plotted to the y-axis. Generally, the independent variable is plotted to the x-axis and the dependent variable is plotted to the y-axis. For example, if it is assumed that a person’s weight is partially dependent on or related to the person’s height, then height would be graphed to the x-axis and weight would be graphed to the y-axis. For time series graphs the x-axis is generally time while the y-axis is a variable that can change over time, such as temperature or barometric pressure at a location. Note that it is not always clear which variable is the dependent and which is the independent variable. If one variable tends to increase as the other increases, this is known as a positive or direct relationship. In contrast, if one variable decreases as the other increases this would be a negative or indirect relationship. In the first example, car weight and fuel efficiency are being compared, and the graph suggests a negative or indirect relationship: fuel efficiency tends to decrease with car weight. Car weight was plotted on the x-axis and fuel efficiency on the y-axis because it is assumed that fuel efficiency is being impacted by weight. So, fuel efficiency is the dependent variable and car weight is the independent variable. It is also possible to show additional variables using other graphical parameters. For example, in this graph color represents the number of engine cylinders and the dot size represents the engine’s horsepower. The second graph provides a comparison of gross domestic product per capita and life expectancy for countries. Also, color represents the continent and size represents the country population. Here, we see a correlation between GDP per capita and life expectancy. However, it does not appear to be a linear relationship. 



Relationships Between Variables: Scatterplot Matrix
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Presenter Notes
Presentation Notes
It is also possible to compare multiple variables using a scatterplot matrix. Using this method, all variables are compared as pairs within a matrix where rows and columns are defined by the variables. 



Bell-shaped

Mean, median, and mode are equivalent 

Curve is symmetrical about the mean

Shape of the normal curve varies based 
on the mean and standard deviation of 
the data

68.3% of the data are within one 
standard deviation of the mean

95.4% of the data lie within two 
standard deviations of the mean

99.7% of the data lie within three 
standard deviations of the mean

Normal Distribution
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Presenter Notes
Presentation Notes
Sometimes we compare our data distribution to a theoretical distribution, such as a normal distribution. Further, some statistical tests assume that data follow a defined distribution in order for the test to be valid. Such tests are called parametric tests. One example is the normal distribution, which has defined characteristics. It is bell-shaped, the mean, median, and mode are equivalent, and it is symmetrical about the mean, which is shown in the example as a red dotted line. The shape of the normal curve varies based on the mean and standard deviation of the data. However, 68.3% of the data are within one standard deviation of the mean, 95.4% of the data are within two standard deviations of the mean, and 99.7% of the data are within three standard deviations of the mean.



Skewness = measure of symmetry

- = skew to left

+ = skew to right

0 = near normal

Kurtosis = heavy-tailed or light-
tailed compared to a normal 
distribution

- = light-tailed (leptokurtic)

+ = heavy-tailed (platykurtic)

0 = near normal (mesokurtic)

Skewness and Kurtosis
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Presenter Notes
Presentation Notes
We can compare our data distribution to a normal distribution using skewness and kurtosis. Skewness measures the symmetry of the data distribution. Negative values indicate that the data are skewed to the left or have a tail to the left, representing low values, whereas positive values indicate that data are skewed to the right or have a tail to the right, presenting high values. Skewness values near zero indicate symmetrical data and is one indication of normality. Kurtosis measures how variable or dispersed the data are relative to a normal distribution. Kurtosis exists when the percentage of the data occurring within a specified standard deviation of the mean differs from the percentage defined for a normal distribution. Data are considered leptokurtic if they have less variability or are less dispersed than a normal distribution, platykurtic if they are more variable or dispersed than a normal distribution, and mesokurtic if the variability approximates that of a normal distribution. So, data that are normally distributed will have a skewness near zero and be mesokurtic. 



On line = normal

Concave = skewed to 
right

Convex = skewed to the 
left

High/low off line = 
kurtosis

Are your data normally distributed?

Q-Q Plot
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Presenter Notes
Presentation Notes
Another way to assess normality is by using a QQ Plot.A QQ Plot compares the quantiles of the data to theoretical quantiles that represent a normal distribution of the data. Features that fall along the reference line have quantiles that approximate those of a normal distribution. If the points fall off of the reference line, this suggests issues in normality. The data may be skewed, have kurtosis issues, or be multimodal.



On line = normal

Concave = skewed to 
right

Convex = skewed to the 
left

High/low off line = 
kurtosis

Are your data normally distributed?

Q-Q Plot 16

Presenter Notes
Presentation Notes
Generally, QQ plots will take on a convex shape if the data are skewed to the left, a concave shape if skewed to the right, and will diverge from the reference line at high and low values if there are kurtosis issues. 



A valuable to for geographic statistical 
and exploratory data analysis

Also, its free!

GeoDa

https://geodacenter.asu.edu/
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Presenter Notes
Presentation Notes
If you would like to visualize and explore your data, I would recommend looking into the free and open-source GeoDa tool made available by the Center for Spatial Data Science at the University of Chicago. 

https://geodacenter.asu.edu/


A sample is a set of measurements taken from a larger group or 
population. 

Sample means and variances can serve as estimates for their 
population.

Easier to measure with samples, then draw conclusions about entire 
population.

Sampling
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Presenter Notes
Presentation Notes
It is generally not possible to measure all members of a population. For example, if you wanted to conduct a study in which all undergraduates at a university are considered the population, it would be very difficult to collect data for every single student. As additional examples, it would not be feasible to measure every tree in a forest or every fish in a river. So, we must collect a sample from the larger population. In order to draw unbiased conclusion about the population from the sample, it must be an unbiased representation of the population. This is accomplished using random sampling. Using appropriate sampling methods will allow you to approximate the mean and variance of the population with the sample. 



Types of Sampling

Simple Random 
Sampling

Systematic Sampling Systematic Sampling 
Along Transects
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Presenter Notes
Presentation Notes
Different types of sampling methods are available. Here, I will focus on sampling methods used over map space. When using simple random sampling, random locations are selected across a study area extent as random x, y coordinate pairs. So, this is purely random. In contrast, systematic sampling involves sampling using a fixed pattern or spacing. For example, a sample could be collected every 50 meters. Random or systematic sampling can also be performed along transects. This is a common method used by ecologists and foresters. 



Types of Sampling

Stratified Random Sampling 
(By land cover type) Random Sampling 

within Clusters
20

Presenter Notes
Presentation Notes
Stratified random sampling involves collecting a defined number of random samples per category. For example, a fixed number of samples could be collected for each land cover class. Random sampling within clusters involves defining clusters or smaller extents within the larger extent of interest then selecting random samples within these extents. This method is commonly used when it is too difficult or infeasible to collect random samples across the entire extent of interest. 



QGIS 

R

ArcGIS Pro
Generate Random Points
Generate Points Along Line
Generate Tessellation
Create Fishnet

Tools for Sampling
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Presenter Notes
Presentation Notes
Many tool are available in geospatial software packages to perform random sampling. For example, ArcGIS Pro has a tool to generate random points and points along lines or transects. 



Filling a plane completely with non-overlapping geometric shapes

Can use generated features as sampling or aggregation units

Tessellation
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Presenter Notes
Presentation Notes
Tessellation involves filling a plane completely with non-overlapping geometric shapes. Commonly used shapes include hexagons, triangles, and squares. These units can then be used to define sampling strategies or aggregate data. 



Creates a fishnet of regular cells

Fishnets

Imagery from ESRI Basemap

23

Presenter Notes
Presentation Notes
Fishnets can be used to generate grids over spatial extents. They can be useful in planning or defining sampling strategies. I have also found them to be useful to aid in digitizing over large areas, as they can act as tiles to subset the task and as guides while digitizing. 



Spatial Central Tendency and 
Dispersion
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Identifies the most central feature 

The central feature is defined as 
the feature in the dataset with the 
smallest accumulated distance 
from all other features

Euclidean Distance = straight-line 
distance

Manhattan Distance = sum of 
distance in x and y directions

Can also apply a weight

Can stratify by category

Central Feature
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Presenter Notes
Presentation Notes
We will now look at measures of spatial central tendency and variability. The summary statistics that we have already discussed relate to attribute information. Now, we are interested in measuring the spatial central tendency in the map space as opposed to the distribution of the attribute values. One method to explore spatial central tendency is the central feature technique. This feature is defined as the feature in the dataset with the smallest accumulated distance from all other features. Distance can be defined using the Euclidean or Manhattan methods. Euclidean distance is the straight line distance between 2 points while Manhattan distance is the sum of the distance between points in the x and y directions, similar to walking city blocks. The Manhattan and Euclidean distance can be the same length if the two features are exactly north to south or east to west of each other. However, the Manhattan distance is generally longer. This process will identify one of the input features as the central feature. You can also incorporate weights into the calculation. For example, for the airport example provided here you could include a weight as the number of passengers per year. You can also obtain different central features by category as defined by an attribute. For example, you could get different central features for international and regional airports. 



Mean Center = the average 
x and y coordinate from the 
features
Median Center = the 

median x and y coordinate 
from the features
A new location, one of the 

input features will not be 
selected
Can apply a weight
Can stratify by category

Mean and Median Center

Green = Mean Center
Yellow = Median Center
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Presenter Notes
Presentation Notes
As an alternative to central feature, you can also calculate the mean or median center. The mean center is the average x and y coordinate for the features while median center represents the median. Note that this tool will return a new coordinate as opposed to one of the input features. Similar to central feature, you can apply weights relative to an attribute or get different coordinates by category. 
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Video: Spatial Central Tendency



Measures the degree to which 
features are concentrated or 
dispersed around the geometric 
mean center
Larger = more spatial dispersion
Smaller = less spatial dispersion
Center = mean center
Can specify the number of standard 

deviations
Can apply a weight
Can stratify by category

Standard Distance
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Presenter Notes
Presentation Notes
Central feature, mean center, and median center, provide a measure of spatial central tendency. They do not represent dispersion. Standard distance can be used to obtain a measure of dispersion. It provides a measure of the degree to which features are concentrated or dispersed around the geometric mean center using standard deviation. Smaller circles indicate less dispersion while larger circles indicate more dispersion. Standard distance for different datasets can be compared to get a sense of how they differ in regards to spatial dispersion. Similar to the central tendency, weights can be applied and separate standard distances can be obtained by category or group. 



Creates and ellipse that 
summarizes spatial central 
tendency, spatial dispersion, 
and directional trends

Can specify number of standard 
deviations

Can apply a weight

Can stratify by category

Directional Distribution (Standard Deviation Ellipse)
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Presenter Notes
Presentation Notes
Standard distance does not provide any measure of directional trends. Directional distribution or the standard deviation ellipse summarizes the spatial central tendency, spatial dispersion, and directional trends.The center of the ellipse will be the mean center, the size of the ellipse relates to spatial dispersion, and the long and short axis relate to directional trends. Similar to the central tendency, weights can be applied and separate standard deviation ellipses can be obtained by category or group. 



Spatial Statistics
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Null Hypothesis (H0) = there is no statistical significance or difference

Alternative Hypothesis (Ha) = there is statistical significance or 
difference

If the statistical test does not show statistical significance, we fail to reject 
the null hypothesis

A specific statistical test will commonly produce a statistic or index

This is then compared to a distribution, such as a z-distribution or 
normal distribution 

From this, you can get a p-value

A p-value of 0.05 suggest that there is less than a 5% change of obtaining 
the result by random chance (this is equivalent to a 95% confidence 
interval)

How to Interpret a Statistical Test
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Presenter Notes
Presentation Notes
We will now discuss statistical tests that can be used to address a spatial question. First, we will review how to interpret statistical tests. If you fail to reject the null hypothesis, this suggests there is no statistical significance or that the results were not significant. In contrast, if the null hypothesis is rejected, this suggests statistical difference or that there is statistical significance. A specific statistical test will commonly produce a statistic or index. This is then compared to a distribution, such as a z-distribution or normal distribution. Comparison to this distribution will allow for the calculation of a p-value. A p-value of 0.05 suggest that there is less than a 5% change of obtaining the result by random chance. This is equivalent to a 95% confidence interval.



Analyzing Point Patterns
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Test to determine if a point pattern/distribution is random,  clustered, 
or dispersed

Null Hypothesis = point pattern is random

Alternative Hypothesis = point pattern is not random (clustered or 
dispersed)

Only looks at the spatial distribution of points, not the attributes stored 
on the points

Can calculate distance using the Euclidean or Manhattan method

Average Nearest Neighbor
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Presenter Notes
Presentation Notes
The first statistical method that we will explore is average nearest neighbor. This test is used to determine if a point pattern or distribution is random, clustered, or dispersed.The null hypothesis is that the pattern is random. While the alternative hypothesis is that the points are not random, or that they are clustered or dispersed. This is based on the calculation of the nearest neighbor ratio, which is based on a comparison of the actual point distribution to a hypothetical one. Distances in this test can be calculated using Euclidean distance or Manhattan distance. Note that this test does not consider the actual attributes stored on the points. It only looks at the point pattern. 



Average Nearest Neighbor
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Presenter Notes
Presentation Notes
Here is an example output for average nearest neighbor for the pictured point distribution. The nearest neighbor ratio is greater than 1 and the p-value is 0.062. This suggest slight dispersion. However, this is not statistically significant at the 95% confidence interval. So, this would not be statistically significant and the pattern would be considered to be random. 



Average Nearest Neighbor
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Presenter Notes
Presentation Notes
This is a perfectly dispersed pattern. The nearest neighbor ratio is greater than 1 and the p-value is 0, suggesting strong statistical significance. So this pattern is suggested to be disperse. 



Average Nearest Neighbor

36

Presenter Notes
Presentation Notes
For this result, the nearest neighbor ratio is less than 1 and the p-value is zero, suggesting strong statistical significance for a clustered pattern.
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Video: Nearest Neighbor



Assess patterns at multiple scales or 
distances

When the observed K value is larger 
than the expected K value for a 
particular distance, the distribution is 
more clustered than a random 
distribution at that distance (scale of 
analysis). 

When the observed K value is smaller 
than the expected K value, the 
distribution is more dispersed than a 
random distribution at that distance. 

Ripley’s K
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Presenter Notes
Presentation Notes
Average nearest neighbor offers a global assessment of the point pattern. However, different patterns could exist at different spatial scales. Ripley’s K provides this comparison at different scales. This test will be performed at a variety of different distances. When the observed K value is larger than the expected K value for a particular distance, the distribution is more clustered than a random distribution at that distance.When the observed K value is smaller than the expected K value, the distribution is more dispersed than a random distribution at that distance. 



Global Spatial Autocorrelation
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Tobler’s First Law of Geography

Everything is related to everything else, but near things are more related 
than distant things.

Tober, W. (1970) “A computer movie simulating urban growth in the Detroit 
region.” Economic Geography, 45(2): 234-240.
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Presenter Notes
Presentation Notes
One key concept in geography is Tobler’s First Law of Geography that states that everything is related to everything else, but near things are more related than distant things.For example, you would expect individuals that have clustered into communities to have more similar beliefs and customs than individuals in different communities. As a second example, you would expect soil samples that were collected close together to have more similar physical and chemical characteristics than samples that are separated by a greater distance. This suggests that there are patterns across geographic space that can be explored and studied. This is the concept of spatial autocorrelation. 



Tobler’s First Law of Geography

Clustered Random Dispersed
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Presenter Notes
Presentation Notes
Clustering or positive spatial autocorrelation suggests that near features are more similar than features that are more separated. The first example provided here is an example of clustering since all the red cells are on one side and all the blue cells are on the other. Dispersion or negative spatial autocorrelation suggests that more similar values are actually more separated over space. For example, the dispersed example above is dispersed because the different colors are as spread out as they can be.Random implies no patterns across space. 



Semivariance = measure 
of the spatial dependence 
between two observations 
as a function of the 
distance between them
= squared difference of 

the two values

Semivariogram = a graph 
of how semivariance
changes as the distance 
between observations 
changes

Semivariogram
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Presenter Notes
Presentation Notes
A semivariogram is a graphical representation of the concept of spatial autocorrelation. On a semivariogram, the x-axis represents distance between sample points, or lag. In the graph space, each point represents a pair of samples or observations. The x-coordinate is the lag or distance between the samples. The y-axis is the semivariance, which is a measure of the spatial dependency between two samples or observations. High semivariance suggests that the two observations or samples have very different values whereas low values of semivariance suggest they have very similar values. Based on Tobler’s First Law of Geography, we would expect near objects to have more similar values and further objects to have less similar values. Or, near objects are expected to have low semivariance whereas samples that are more separated are expected to have high semivariance. This is the concept of spatial autocorrelation. The semivariogram shown here represents simulated data. Real data are likely to show a more complex or noisy pattern. The next slide will explain key features of the semivariogram. 



Range = distance where model first flattens out

 Sill = value of semi-variance at range 

Nugget = semi-variance at distance = zero

 Partial Sill = sill minus nugget

 Theoretically, at zero separation distance (lag = 0), 
the semivariogram value is 0. However, at an 
infinitesimally small separation distance, the 
semivariogram often exhibits a nugget effect, which is 
some value greater than 0.

 The nugget effect can be attributed to measurement 
errors or spatial sources of variation at distances 
smaller than the sampling interval or both. 
Measurement error occurs because of the error 
inherent in measuring devices. Natural phenomena 
can vary spatially over a range of scales. Variation at 
microscales smaller than the sampling distances will 
appear as part of the nugget effect. Before collecting 
data, it is important to gain some understanding of 
the scales of spatial variation.

Semivariogram
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Presenter Notes
Presentation Notes
First, the distance at which the semivariance stops increasing is the range. This value can be determined by extrapolating from the fitted semivariance curve to the x-axis. Samples that are closer together then this distance are spatially autocorrelated. Samples that are further than this distance are not spatially autocorrelated.The sill is the semivariance at the range. Or, the semivariance at the distance where spatial autocorrelation is no longer present.You would expect the semivariance at a distance or lag of zero to be zero. Or, you would expect samples at the same location to have the same value. However, this is not always the case for real data. This is known as the nugget effect. This arises due to measurement error or spatial sources of variation at distances smaller than the sampling unit. The partial sill is the semivariance obtained when the nugget is subtracted from the sill. Again, the semivariogram can be thought of as a graphic representation of spatial autocorrelation. In this example, near features tend to have a lower semivariance, or are more correlated whereas more distant features tend to have a greater semivariance or are less correlated. At a certain distance, the range, samples are no longer spatially autocorrelated and the semivariance stops increasing. So, near features have more similar values than observations that are more separated. Or, spatial autocorrelation is present. 
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Video: Semivariogram



Measures spatial autocorrelation based on 
feature locations and attribute values using the 
Global Moran's I statistic

Null Hypothesis = spatial pattern of attributes 
is random

Alternative Hypothesis = spatial patter of 
attributes is not random (spatially clustered or 
dispersed)

Can use Euclidean Distance or Manhattan 
Distance

Must specify  a conceptualization of spatial 
relationships

Positive Moran’s I = clustering

Negative Moran’s I = dispersion

Moran’s I (Spatial Autocorrelation)
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Presenter Notes
Presentation Notes
Moran’s I provides a statistical assessment of global spatial autocorrelation. Note that this is different from average nearest neighbor because we are now assessing how the values associated with features are correlated based on distance, not simply the point pattern itself.The null hypothesis for this test is that the pattern is random or that there is no correlation between the attribute of interest and distance between samples. Or, there is no spatial autocorrelation. If the test is statistically significant, then this suggests that there is spatial autocorrelation. A positive Moran’s I suggests clustering or positive spatial autocorrelation while a negative value suggests dispersion or negative spatial autocorrelation. Distance in this test can be defined based on Euclidean or Manhattan distance. It also requires a conceptualization of spatial relationships, which will be explained in the next slide. 



 INVERSE DISTANCE = Nearby neighboring features have a larger influence on the computations for a target 
feature than features that are far away.

 INVERSE DISTANCE SQUARED = Same as INVERSE_DISTANCE except that the slope is sharper, so 
influence drops off more quickly, and only a target feature's closest neighbors will exert substantial influence on 
computations for that feature. 

 FIXED DISTANCE BAND = Each feature is analyzed within the context of neighboring features. Neighboring 
features inside the specified critical distance (Distance_Band_or_Threshold) receive a weight of one and exert 
influence on computations for the target feature. Neighboring features outside the critical distance receive a 
weight of zero and have no influence on a target feature's computations. 

 ZONE OF INDIFFERENCE = Features within the specified critical distance (Distance_Band_or_Threshold) of 
a target feature receive a weight of one and influence computations for that feature. Once the critical distance is 
exceeded, weights (and the influence a neighboring feature has on target feature computations) diminish with 
distance. 

 CONTIGUITY EDGES ONLY = Only neighboring polygon features that share a boundary or overlap will 
influence computations for the target polygon feature. 

 CONTIGUITY EDGES CORNERS = Polygon features that share a boundary, share a node, or overlap will 
influence computations for the target polygon feature. 

 GET SPATIAL WEIGHTS FROM FILE = Spatial relationships are defined by a specified spatial weights file. The 
path to the spatial weights file is specified by the Weights_Matrix_File parameter.

Conceptualization of Spatial Relationships

http://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/spatial-autocorrelation.htm 46

Presenter Notes
Presentation Notes
Since Moran’s I requires that values associated with a feature be compared to values for nearby features, you must define what you mean by neighboring or near features. Different methods are available, as described on this slide. As an example, when using inverse distance nearby neighbors have a larger influence on the computations for a target feature than features that are further away. When a fixed distance band is used only features within a defined distance are considered. For zone of indifference, features within a critical distance are assigned a weight of 1. The weight diminishes with distance past the critical distance. When contiguity edges only is used only features that share a boundary or overlap will be considered in the computation for the target feature. There is not necessarily a correct method to use, as this is case specific. However, you should make and attempt to justify your decision based on the nature of the data and the question being investigated.

http://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/spatial-autocorrelation.htm


Moran’s I (Spatial Autocorrelation)

Percent Poverty by Census Tract

Used contiguity 
edges only
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Presenter Notes
Presentation Notes
Here is an example result for Moran’s I. Specifically, we are investigating spatial autocorrelation for percent poverty at the census tract scale. Here, a positive Moran’s I of 0.25 is obtained and a p-value of 0. This indicates that there is clustering or positive spatial autocorrelation globally for percent poverty as summarized on Census tracts. Near census tracts tend to have more similar percent poverty rates. 
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Video: Moran’s I



Moran’s I assesses the clustering of similar 
values

This statistic specifically looks for the 
clustering of high and low values globally

Null Hypothesis = high values or low values 
aren’t clustered

Alternative Hypothesis = high and/or low 
values are clustered

Can use Euclidean Distance or Manhattan 
Distance

Must specify  a conceptualization of spatial 
relationships

Positive G = High clusters

Negative G = Low clusters

Getis-Ord General G

Used contiguity 
edges only
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Presenter Notes
Presentation Notes
Another test to explore or assess spatial autocorrelation is the Getis-Ord General G. This test is similar to Moran’s I; however, it specifically explores the clustering of high or low values. The null hypothesis is that there is no clustering of high or low values, or that the pattern is random. The alternative hypothesis is that there is clusters of high or low values. A positive General G suggests clustering of high values while a negative General G suggests clustering for low values. 



Local Spatial Autocorrelation
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A local version of Moran’s I

 Looks for local patterns in the values associated with map features

Null Hypothesis = local random pattern

Alternative Hypothesis = local spatial autocorrelation (dispersion or clustering)

Can use Euclidean Distance or Manhattan Distance

Must specify  a conceptualization of spatial relationships

 Positive I = feature has neighboring features with similarly high or low attribute 
values

Negative I: feature has neighboring features with dissimilar values

HH = cluster of high values

 LL = cluster of low values

HL = high value surrounded by low values

 LH = Low value surrounded by high values

Local Indicators of Spatial Autocorrelation (LISA)
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Presenter Notes
Presentation Notes
The Moran’s I and Getis-Ord General G tests assess global spatial autocorrelation. A single result is provide for all features or the entire map. However, patterns could be investigated locally. Or, a result could be obtained for each map feature. Local Indicators of Spatial Autocorrelation, or LISA, provides a local version of Moran’s I. The null hypothesis is that there is no pattern or randomness while the alternative hypothesis is that there is local spatial autocorrelation, or that dispersion or clustering exists locally.This test is able to differentiate local patterns of clusters of high values, clusters of low values, high values surround by low values, and low values surround by high values. 



Percent Poverty by Census 
Tract

Used contiguity 
edges only

Local Indicators of Spatial Autocorrelation (LISA)
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Presenter Notes
Presentation Notes
Here is an example result for percent poverty summarized by Census tract. Light red indicates a high value surround by other high values while dark red indicates high values surround by low values.Light blue indicates low values surround by other low values while dark blue indicated low values surround by other low values. White indicates no pattern or no statistical significance. Again, this is a local measure, so a result is provided for each map feature individually as opposed to a global measure. 



This is a local version of the Getis-Ord General G

It looks for local clustering of high or low values 

Hot Spot = Cluster of high values

Cold Spot = Cluster of low values

Null Hypothesis = No local cluster of high or low 
values

Alternative Hypothesis = Local cluster of high or 
low values

Can use Euclidean Distance or Manhattan 
Distance

Must specify  a conceptualization of spatial 
relationships

Larger z-score = clustering of high values

Smaller z-score = clustering of low values

Hot Spot Analysis (Getis-Ord Gi*)

Map by Caleb Alt
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Presenter Notes
Presentation Notes
The Getis-Ord Gi* provides a local version of the Getis-Ord General G. This test is also known as hot spot analysis. It is used to find local clusters of high values, called hot spots, or local clusters of low values, called cold spots. The null hypothesis is that there are no local clusters of high or low values while the alternative is that there are hot and/or cold spots.The provided example represents an assessment of population change between 2000 and 2010. Red indicates hot spots, or clusters of counties that have seen population growth during this time period. Blue areas indicate clusters of counties that have seen population decreases during this time period. Tan indicates no pattern. 



Hot Spot Analysis (Getis-Ord Gi*)

Example provided by 
Mike and Jackie Strager
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This is a local version of the Getis-Ord General G

It looks for local clustering of high or low values 

Hot Spot = Cluster of high values

Cold Spot = Cluster of low values

Null Hypothesis = No local cluster of high or low 
values

Alternative Hypothesis = Local cluster of high or 
low values

Can use Euclidean Distance or Manhattan 
Distance

Must specify  a conceptualization of spatial 
relationships

Larger z-score = clustering of high values

Smaller z-score = clustering of low values

Presenter Notes
Presentation Notes
The example provided here shows results for a hot spot analysis by block group for the number of people over 65. Red areas indicate clusters of block groups with a large number of people over 65, or hot spots. Blue indicates clusters of counties with lower numbers of people over 65, and tan indicates no pattern. 



Percent Poverty by Census 
Tract

Used contiguity 
edges only

Hot Spot Analysis (Getis-Ord Gi*)
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Presenter Notes
Presentation Notes
As another example, this slide represents results for a hot spot analysis of percent poverty at the census tract scale. Red indicates clusters of high poverty while blue indicates clusters of low poverty. White suggests no pattern. 



Regression
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Regression can be used to explore the relationship between variables

You can predict a continuous variable using other variables

Dependent Variable = what you are trying to predict

Independent Variable(s) = what is used to predict the independent 
variable

What is regression used for?
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Presenter Notes
Presentation Notes
We will end this module with a brief introduction to regression and geographically weighted regression. Regression techniques can be used to explore the relationship or correlation between variables and also predict a continuous variable using other variables. There are forms of regression designed for probabilistic or classification problems, like logistic regression, but we will not discuss those here. Regression can be used to predict a dependent variable using one or more independent variables.



y = mx + b + ε

ŷ = mx + b 

y = true value being predicted

ŷ = estimated value for y

m = slope

x = predictor or independent variable

b = y-intercept

ε = the part of y not explained by x (residual)

Single Regression
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Presenter Notes
Presentation Notes
When using single regression, a single independent variable is used to predict a dependent variable.The result will be a linear equation that relates the two variables. The equation will include a slope term, or coefficient, and a y-intercept. ŷ is the predicted y value whereas y represents the correct y value. The difference between y and ŷ is the residual or error term. So, y is equal to the linear equation or model plus the error term. 



y = β0 + β1x1 + β2x2 + β3x3 + ……….. βnxn + ε

Predict Y using more than one independent variable

Multiple Regression
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Presenter Notes
Presentation Notes
It is also possible to predict the dependent variable using more than one independent variable. This is known as multiple regression. In this case a linear equation will be produced that includes a y-intercept and coefficients for all x variables. β0 is the y intercept while βn represents the coefficient or slope for the nth x variable. 



ε = y - ŷ

Residuals

https://commons.wikimedia.org/wiki/File:Res
iduals_for_Linear_Regression_Fit.png
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Presenter Notes
Presentation Notes
Again, the residual, or error term, represents the difference between y and the predicted value for y, or ŷ.In the example graphic, the linear model is represented by the red line. The residual for each point would be the distance from the line to the sample point along the y-axis. 

https://commons.wikimedia.org/wiki/File:Residuals_for_Linear_Regression_Fit.png


RMSE = √ Σ(y - ŷ)2/n

Root Mean Square Error (RMSE) will 
be in the units of y

Mean Square Error (MSE) = Σ(y - ŷ)2/n

Assessing Models: RMSE
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Presenter Notes
Presentation Notes
As already mentioned in previous modules, continuous predictions can be assessed using root mean square error or RMSE.MSE, or Mean Square Error, is simply RMSE without the square root applied. RMSE will be reported in the units of the variable being predicted while MSE will be in the square of the units. For example, if you are predicting chemical concentration in parts per million, then RMSE will be reported in parts per million and MSE will be reported in parts per million squared. RMSE is generally calculated by comparing the predicted value to the value provided by the validation data. The values are subtracted to obtain a residual or error. The residuals are then squared, summed, then divided by the number of samples. This will provide MSE. The square root is taken to obtain RMSE. Lower RMSE and MSE suggests a better model.



R2 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑆𝑆𝑆𝑆𝑆𝑆 𝑇𝑇𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑅𝑅𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅𝑆𝑆𝑇𝑇𝑇𝑇 𝑆𝑆𝑆𝑆𝑆𝑆 𝑇𝑇𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑆𝑆𝑆𝑆𝑆𝑆 𝑇𝑇𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆

Total Sum of Squares = Σ(y - ȳ)2

Residual Sum of Squares = Σ(y - ŷ)2

Proportion of variance in y explained by the model

Assessing Models: R2
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Presenter Notes
Presentation Notes
Another means by which to assess continuous predictions is R2. This value represents the proportion of variance in the quantity being predicted explained by the model. It is generally scaled from 0 to 1. 0 indicates that no variance is explained, or this is a poor model, while 1 indicates that all variance is explained. So, higher values are better. 



When you have more than one x (multiple regression) you have to use 
adjusted R2

Adjusted R2 = 1 - (1−𝑅𝑅2)(𝑁𝑁−1)
(𝑁𝑁−𝑝𝑝−1)

N = sample size, p = number of variables

Assessing Models: Adjusted R2
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Presenter Notes
Presentation Notes
When more than one predictor variable is used, R2 must be modified to obtain adjusted R2 to deal with inflation when multiple predictor variables are included.The equation requires altering R2 based on the sample size and number of predictor variables. 



More on R2

1. R-squared is a statistical measure of how close the data are to the fitted 
regression line. It is also known as the coefficient of determination, or 
the coefficient of multiple determination for multiple regression

2. The percentage of the response variable variation that is explained by a 
linear model

3. R-squared = Explained variation / Total variation
4. R-squared is always between 0 and 100%
5. R-squared cannot determine whether the coefficient estimates and 

predictions are biased, which is why you must assess the residual plots
6. R-squared does not indicate whether a regression model is adequate. 

You can have a low R-squared value for a good model, or a high R-
squared value for a model that does not fit the data!
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Presenter Notes
Presentation Notes
This slide provides some additional information relating to R2.



More on Adjusted R2

1. One major difference between R-squared and the adjusted R-squared is 
that R-squared supposes that every independent variable in the model 
explains the variation in the dependent variable. It gives the percentage 
of explained variation as if all independent variables in the model effect 
the dependent variable

2. Whereas the adjusted R-squared gives the percentage of variation 
explained by only those independent variables that in reality affect the 
dependent variable

https://www.youtube.com/watch?v=KjRrdb2x6dA 65

Presenter Notes
Presentation Notes
This slide provides some additional information relating to adjusted R2.

https://www.youtube.com/watch?v=KjRrdb2x6dA


Linear relationships

Residuals are normally distributed 
(use QQ Plot)

No or little multicollinearity (Variance 
Inflation Factor (VIF))

No spatial autocorrelation (Moran’s I)

Homoscedasticity

Regression Assumptions
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Presenter Notes
Presentation Notes
Linear regression is a parametric method that has assumptions. If these assumptions are not met, then the result may be misleading or invalid.When performing linear regression, it is assumed that there is a linear relationship between the variables. If the relationship is not linear then linear regression is not valid. Or, the variables may need to be transformed so that the relationship becomes more linear in the transformed space. The residuals should be normally distributed. This can be assessed using the QQ plot as described above. There should also not be a lot of correlation between the multiple independent variables in multiple regression. If they are highly correlated, this is called multicollinearity. Although some correlation can be tolerated, this makes it difficult to interpret the coefficients. This can be assessed using the Variance Inflation Factor, or VIF. It is also assumed that the samples are independent of each other. If spatial autocorrelation exists, then it cannot be assumed that the samples are independent. This can be assessed using Moran’s I. This is a common issue when performing regression analysis for spatial data. If spatial autocorrelation exists, geographically weighted regression may be more appropriate. Lastly, the model should be able to estimate similar values of y with similar error or residual terms. Or, the variance in the residuals should not vary with values of y. This is known as homoscedasticity. If the variance of the residuals does vary with values of y, this is known as heteroscedasticity. 



What if the relationship between y and x vary across space?

In this case, a single regression equation could be misleading or weak

It is possible to create regression equations that change over space

There will be a different intercept (β0) and coefficients (βn) across the 
map space

Geographically Weighted Regression (GWR)

https://www.youtube.com/watch?v=plfCMZhROeQ 67

Presenter Notes
Presentation Notes
What if the relationship between the dependent and independent variables vary over space? Or, what if there is spatial heterogeneity in relationships? In this case, it may not be appropriate to generate one regression equation for all features or the entire mapped extent. Instead, it might be more appropriate to allow the equation to vary over space to capture the changing relationships. This is the concept of geographically weighted regression or GWR. Note that there are different forms of GWR. When using GWR, the regression equation will vary across the map space or for each mapped feature. Specifically, different coefficients will be calculated, as demonstrated in the provided table. This is a powerful technique for improving the suitability of linear regression for making predictions over map space where relationships can vary. 

https://www.youtube.com/watch?v=plfCMZhROeQ


Geographically Weighted Regression (GWR)

Y Intercept Coefficient for Distance 
from Urban Center

https://www.youtube.com/watch?v=plfCMZhROeQ 68

Presenter Notes
Presentation Notes
As highlighted in the provided examples, the coefficients vary over the map space when using GWR as opposed to the same coefficients or a single equation across the map space. 

https://www.youtube.com/watch?v=plfCMZhROeQ


This is the end of this lecture module. 

Please return to the West Virginia View 
Webpage for additional content. 
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Presenter Notes
Presentation Notes
Thanks! Hope you found this useful. 
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