
Image from NASA:
https://commons.wikimedia.org/wiki/File:Earth_Western
_Hemisphere_transparent_background.png#filelinks

Building and Improving
Models

Methods in Open Science

Presenter Notes
Presentation Notes
Building off the module on predictive modeling and machine learning, we will discuss key considerations and methods for creating models.

https://commons.wikimedia.org/wiki/File:Earth_Western_Hemisphere_transparent_background.png#filelinks

Hyperparameter Optimization

2

Algorithm User-Defined Parameters Example References

k-nearest neighbor
-Number of neighbors

considered (k)
Cover and Hart, 1967; Dudani,

1976; Bailey and Jane, 1978

Multilayer perception (MLP)
artificial neural networks with

backpropagation

-Number of hidden layers
-Number of nodes in each layer

-Learning rate
-Momentum factor

-Weight initialization
-Number of iterations

Rumelhart et al., 1986

Decision trees -Pruning parameters Quinlan, 1986
Boosted decision trees

(Adaboost method)
-Number of iterations or trees

(n)
Freund and Schapire, 1996

Random forests

-Number of trees (n)
-Number of variables randomly
sampled as candidates at each

split (m)

Breiman, 2001

Support vector machines using
polynomial kernel

-polynomial order (p)
-Cost or slack parameter (C)

Cortes and Vapnik, 1995; Vapnik,
1995

Support vector machines using
radial basis kernel

-gamma (γ)
-Cost or slack parameter (C)

Cortes and Vapnik, 1995; Vapnik,
1995 3

User-Defined Hyperparameters

Presenter Notes
Presentation Notes
Most machine learning methods have hyperparameters that are not learned during the training process and must be set by the user. I generally think of these as the different knobs that can be turned by the user for a specific learning algorithm. The specific hyperparameters and number of hyperparameters varies between algorithms. Also, how sensitive an algorithm is to its hyperparameters also varies. It is not generally known in advance if optimizing the hyperparameters will improve the performance of the algorithm for a specific task. So, it is generally recommended that an optimization process be performed in order to select hyperparameters.This slide provides some example hyperparameters for different algorithms.

4

Does the algorithm need optimization?

Huang, C., Davis, L.S. and Townshend, J.R.G., 2002. An assessment of support vector
machines for land cover classification. International Journal of remote sensing, 23(4),
pp.725-749.

Presenter Notes
Presentation Notes
Again, hyperparameter optimization may or not improve model performance for a specific tasks. Since the impact of the hyperparameters in not know beforehand, it is generally recommended that different settings be tested. This is the process of optimization or hyperparameter tuning. The figures included on this slide are from a study that explored hyperparameters for the SVM algorithm. For the specific task investigated, when using a polynomial kernel, the order hyperparameter tended to have a larger impact in comparison to the gamma parameter when a radial basis function kernel was used. Further, the impact varied based on the size of the training dataset. It would be wrong to assume that the results of this study would hold true for other problems; that is why it is generally recommended to optimize hyperparameters.

If only one hyperparameter is being
assessed, all specified values will be
tested

If multiple hyperparameters are
being assessed, then you will need to
test every combination of parameters

This can be done using a grid search

5

Grid Search

A B C D

1 A1 B1 C1 D1

2 A2 B2 C2 D2

3 A3 B3 C3 D3

4 A4 B4 C4 D4

5 A5 B5 C5 D5

Presenter Notes
Presentation Notes
There are different methods available to tune or optimize hyperparameters. Here, we will explore the grid search as an example. The idea here is that all combinations of the hyperparameters are assessed. In the example table, one parameter has four options, A through D, and the other has five options, 1 through 5. So, a total of 20 combinations would be tested. Note that this process can be slow due to the large number of models that must be trained and assessed. It might take several hours or even days to perform these experiments. One means to speed up the process is to use parallel computing if available. Another option to potentially speed up the process is to test a coarse set of values then test over a smaller, or more precise, range of values dictated by the results from the coarser search. Essentially, you can obtain a rough estimate of the hyperparameter settings in the first pass then refine them in the second pass.

Data are split into training and
testing/validation sets

Model is created on training sample

Model is tested on testing/validation
sample

Hyperparameters that provide the
best prediction on the
testing/validation data are selected

6

Hold Out

Training Sample Testing Sample

Presenter Notes
Presentation Notes
When performing hyperparameter optimization, you want to select the hyperparameters that yield the best model generalization. So, you want to test the results on a set of samples that were not used to train the model. Assessing on the training samples will likely bias the analysis due to overfitting. One option is to split the available samples into separate training and testing/validation sets. This is known as the hold out method. The training set will be used to train the models using different combinations of the hyperparameters while the testing samples will be withheld to compare the models and associated hyperparameters.In the graphic provided, each block represents a sample, and the entire dataset has been randomly partitioned into training and testing sets. One issue with the hold out method is that it reduces the number of samples that are available to train the model, which may be a problem especially when the number of training samples are limited. So, other methods to partition the data and test setting have been developed.

Model is trained on all samples but one

The held-out sample is predicted

This is executed k times, where k is equal to the
number of samples (N)

Average error is computed

Hyperparameters that provides the best average
prediction of the withheld samples are selected

7

Leave-One-Out Cross Validation

……….

Training Sample Testing Sample

Presenter Notes
Presentation Notes
Leave-one-out cross validation consists of training the model on all samples but one. The single withheld sample is then predicted. This process is repeated until all samples have been withheld, and the error is then computed across all the runs. This means that if there are 1,000 samples, 1,000 models will need to be generated for each set of hyperparameters test in the grid search.This method is generally extremely slow, so I avoid using it.

Data are randomly split into k folds
(for example, 10)

Model is trained using k-1 folds and
repeated k times, so that each fold is
left out once

Hyperparameters are assessed
using the withheld fold each time
the model is ran

Hyperparameters that provide the
best average prediction of the
withheld fold are selected

8

k-Fold Cross Validation

Folds

Tr
ai

ni
ng

 I
te

ra
ti

on
s

Training Fold Testing Fold

Presenter Notes
Presentation Notes
The k-fold cross validation sampling partitioning method is my go-to method. The idea here is that the entire dataset is partitioned into k folds. The model is than ran k times, each time training on k-1 folds and maintaining a single fold to validate the results. Using this method, all data points are used to train the model and validate the model. In the graphic, each cell represents a fold. In this case, the data are partitioned into 10 folds and the model is trained 10 times, each time using 9 folds and testing on the remaining fold. This will have to be repeated for each combination of hyperparameters tested. It is common to use 5- or 10- folds. If my sample size is small, I tend to use 5-folds so that each fold does not consist of a very small set of samples. For larger datasets, I generally use 10 folds.

Data are randomly split into k folds (for example, 10)

Model is trained using k-1 folds and repeated k times, so that each fold is
left out once

Hyperparameters are assessed using the withheld fold each time the model
is ran

Process is repeated a defined number of times using different folds

Hyperparameters that provide the best average prediction of the withheld
fold are selected

9

k-Fold Cross Validation with Repeats

Presenter Notes
Presentation Notes
In k-fold cross validation, the folds or data partitions are the same throughout the entire tuning process. One means to potentially improve this process is to repeat the experiment using different random data partitions or folds. This is the concept behind k-fold cross validation with repeats. For example, the 10-fold cross validation could be repeated 5 times using different sets of folds.

Data are split into training and
test/validation sets (for example 2/3 to
train 1/3 to test)

This is repeated multiple times using
different random training/test splits

Hyperparameters that provide the best
average prediction of the withheld data
are selected

10

Bootstrapping

https://commons.wikimedia.org/wiki/File:JM_marbles_01.jpg

Presenter Notes
Presentation Notes
Bootstrapping is another option. Using bootstrapping, repeated model runs are produced with a certain random percent of the data used to train the model and the remaining percent is used to validate. In contrast to k-fold cross validation, the data are not partitioned into non-overlapping subsets or folds. Instead, each repeated model run will use a different random partition of the training and testing samples based on random sampling. So, a single data point may be used multiple times to train or may always end up in the withheld set for all the repeats.

https://commons.wikimedia.org/wiki/File:JM_marbles_01.jpg

Number of training samples available

Algorithm that is being tuned

Number of hyperparameters

Number of values/combination of values to assess

Time/computational requirements (this can take some time)

11

What method should you use?

Presenter Notes
Presentation Notes
There is not necessarily a best data partition or sampling method for hyperparameter tuning. However, there are some important considerations. First off, if only a limited number of training samples are available, this may make using the hold out method difficult. The number of different hyperparameters, number of values, and combination of values for the hyperparameters that will be tested also have an impact. Testing a large number of combinations may take a long time, especially if it is not possible to use parallel computing.I generally prefer to use k-fold cross validation or k-fold cross validation with repeats; however, bootstrapping is also a good option. I generally avoid using leave-one-out cross validation as this method tends to be very slow, especially when a large number of hyperparameter combinations are tested and/or a large number of training samples are used. Although these processes can sound a bit complicated, modern software tools, such as those available in Python and R, make implementing them straightforward.

12

What is optimized?

k-NN
 k (number of neighbors)

Decision Trees
 cp (complexity parameter/level of pruning)

Boosted DT
 Number of iterations/trees

Random Forest
 ntree (number of trees)
mtry (number of random variables to select

from for splitting at each node)

SVM
 C (slack or cost parameter)
 Kernel parameters
 Gamma (RBF)
 Epsilon (RBF)
 Order (Polynomial)

Presenter Notes
Presentation Notes
What is optimized will depend on the algorithm being investigated. This slide provides some examples of parameters that are often optimized for different algorithms. One issue is that some hyperparameters have an infinite number of possible values that could be assessed. For example, the cost parameters for SVM could be set to a variety of values. In contrast, some settings have a more finite set of options. For example, k for the kNN algorithm is generally tested for a subset of neighbors, maybe varying for 3 to 21, for example. The mtry parameter for Random Forest can be 1 through the number of available predictor variables.

Hyperparameters represent user-defined parameters that may impact the
performance of machine learning methods.

It is generally best to tune hyperparameters by testing different values or
combinations of values.

Different algorithms will have different hyperparameters to tune.

Several methods are available to tune hyperparameters and create data partitions.

13

Summary of Key Points: Hyperparameters

Variable Selection

14

15

Developing Predictor Variables

Jain, Anil K., Robert P. W. Duin, and Jianchang
Mao. "Statistical pattern recognition: A
review." Pattern Analysis and Machine Intelligence,
IEEE Transactions on 22.1 (2000): 4-37.

Hughes Phenomenon

Hughes, G.F. 1968. On the mean accuracy of statistical
pattern recognizers. IEEE Transactions on
Information Theory 14 (1): 55–63.
doi:10.1109/TIT.1968.1054102.

“Curse of dimensionality”

Modified from a slide created by Tim Warner

Presenter Notes
Presentation Notes
As discussed in a prior module, including a large number of predictor variables may cause a decrease in model performance. This is because increasing the number of predictor variables increases the model complexity. So, even though more information is provided, the problem most be solved in a more complex feature space. This issue tends to be more of a concern when only a limited number of training samples are provided. This issue is known as the Hughes Phenomenon or the “curse of dimensionality.”As a result of this issue, you may want to limit the number of variables included in the model. You may also choose to limit the number of features to simplify the model.

Feature Selection = pick from the currently available features

Feature Reduction = create a new set of features from original features

16

Feature Selection vs. Feature Reduction

A, B, C, D,
E, F, G, H

A, D, H

A, B, C, D,
E, F, G, H

X, Y, Z

Presenter Notes
Presentation Notes
There are two broad groups of methods for limiting the number of variables to include in a model. One option is to select a subset of features form the larger set of available predictor variables. This is known as feature selection. Another option is to create new variables from the raw input predictor variables. This is known as feature reduction.

Randomly permute predictor
variable of interest

Maintain all other variables

Assess decrease in accuracy for
predicting out-of-bag data

17

Variable Selection with Variable Importance

Maxwell, A.E., T.A. Warner, and M.P. Strager, 2016. Predicting
palustrine wetland probability using random forest machine
learning and digital elevation data-derived terrain variables,
Photogrammetric Engineering & Remote Sensing.

Presenter Notes
Presentation Notes
If you would like to perform feature selection, how do you decide which variables to keep in the model? Optimally, you would like to maintain the variables that are most associated with the variable of interest or that contribute the most to model performance. There are a wide variety of methods to accomplish this. Here, I will discuss variable importance estimates based on the Random Forest algorithm. As mentioned in a prior module, Random Forest is an ensemble decision tree method that uses a subset of the training data to grow each tree and can only select from a subset of the predictor variables at each decision node. Since some of the data are not used in each tree, these out-of-bag (OBB) samples can be use for model validation. They can also be used to assess variable importance. In order to assess variable importance, the variable of interest is randomly permutated and the resulting decrease in accuracy for predicting the OBB samples is assessed. A greater reduction in model performance with the random permutation indicates that the predictor variable is important in the model. The idea behind randomly permutating the data, which is essentially rearranging the predictor variable values so that they are no longer matched with the correct sample, is to remove the correlation or relationship between the predictor variable of interest and the dependent variable. This measure of variable importance estimation is termed OBB Mean Decrease in Accuracy, and greater decreases indicate that the variable is of importance.

Based on variable importance as predicted by random forests

Considers parsimony

After Murphy et al. (2010)

18

Feature Selection using Random Forests

Murphy, M.A., Evans, J.S. and Storfer, A., 2010.
Quantifying Bufo boreas connectivity in Yellowstone
National Park with landscape genetics. Ecology, 91(1),
pp.252-261.

Presenter Notes
Presentation Notes
Murphy et al. (2010) proposed an alteration of this variable importance estimation process that also incorporates a measure of parsimony. Specifically, slight decreases in accuracy with a reduced feature space are allowed in an attempt to reduce the model complexity. So, the optimal set of variables depends on both model performance and model complexity. The best variable subset offers a balance between accuracy and complexity.

Marginal vs. Partial

With no variable correlation:
Marginal = Partial

Traditional RF method:
More marginal

Method after Strobl:
Use conditional permutation importance
Based on conditional inference trees
Considers variable correlation
Estimate marginal or partial importance

19

Variable Importance with RF

Strobl, C., Boulesteix, A.L., Zeileis, A. and Hothorn, T.,
2007. Bias in random forest variable importance
measures: Illustrations, sources and a solution. BMC
bioinformatics, 8(1), pp.1-21.

Strobl, C., Boulesteix, A.L., Kneib, T.,
Augustin, T. and Zeileis, A., 2008.
Conditional variable importance for random
forests. BMC bioinformatics, 9(1), pp.1-11.

Debeer, D. and Strobl, C., 2020.
Conditional permutation importance
revisited. BMC bioinformatics, 21(1),
pp.1-30.

Presenter Notes
Presentation Notes
One key consideration is whether you are interested in a marginal or a partial measure of importance. Marginal measures of importance assess the importance of the variable for predicting the dependent variable without considering the other variables in the model. In contrast, partial importance assesses the added value of the variable given the other variables in the model. If there is no correlation between predictor variables, which is a rare occurrence, then marginal and partial importance are equivalent. Many estimates of importance are not a true measure of marginal or partial importance but are somewhere between these two end members. However, the traditional RF-based variable importance estimation method is generally considered a more marginal estimate of importance. In a series of studies, Strobl et al. proposed a variable importance estimation method based on conditional permutation importance and conditional inference trees. By considering correlation between predictor variables in the importance estimation process, it is possible to derive a less biased estimate of variable importance and specifically obtain estimates of marginal and partial importance. Also, these methods alleviate some additional biases associated with RF-based variable importance estimation resulting from variable correlation, inclusion of both numeric and nominal predictor variables, inclusion of nominal variables with different numbers of levels, and inclusion of numeric predictor variables at varying scales. The methods after Strobl et. al. are my go-to method for variable importance estimation and have been implemented in R via the permimp package.

20

Boruta

Kursa, M.B. and Rudnicki, W.R., 2010. Feature selection
with the Boruta package. J Stat Softw, 36(11), pp.1-13.

https://cran.r-project.org/web/packages/Boruta/index.html

Presenter Notes
Presentation Notes
Yet another method for variable importance estimation using RF is the Boruta method. This method attempts to determine what features are relevant to the predictive task, as opposed to selecting a minimal optimal set of variables, as is common in other RF-based recursive feature elimination methods. It is a wrapper method that uses variable importance, as calculated by the RF algorithm, to assess the relevance of features relative to randomly generated “shadow variables.” The result is a distribution of Z-scores for each variable and a categorization of features as “important”, “unimportant”, or “tentatively important.” This method has been implemented in R within the Boruta package.

https://cran.r-project.org/web/packages/Boruta/index.html

Orthogonal transformation

Converts n correlated variables into n
uncorrelated variables

Idea is that variance is information

Generally, variability in data is
described in a smaller number of
principal components, thus reducing
the number of needed variables

21

Principal Component Analysis (PCA)

https://www.statistixl.com/features/
principal-components/

Presenter Notes
Presentation Notes
As an example of a feature reduction method, we will now discuss principal component analysis (PCA). This is just one example of a feature reduction method. However, it is commonly used. One common issue with data is that the different features or variables tend to be correlated with each other. This results in redundant information based on the assumption that variability is information. So, it might be desirable to generate new, uncorrelated variables from the original features that are not correlated and, thus, capture the information content available in the original data in a smaller number of variables. This is the purpose of principal component analysis, or PCA.

https://www.statistixl.com/features/principal-components/

Eigenvalues = relates to
variance explained by each
principal component

Eigenvectors = Values
needed to create principal
components from a linear
combination of the input
variables

22

Principal Component Analysis (PCA)

PC1 = (0.076*Var1) + (0.131*Var2) + (0.159*Var3) +
(0.794*Var4) + (0.489*Var5) + (0.287*Var6)

Presenter Notes
Presentation Notes
As discussed in previous modules, the process of principal component analysis involves the transformation of the raw variables into a new space in which the resulting features, or principal components, are not correlated. Calculating PCA involves some matrix algebra and the use of a covariance matrix. A mathematical proof of this concept is beyond the scope of this course. The key concept here is that PCA allows for the determination of Eigenvectors, which are effectively coefficients that can be applied to each variable to obtain a new variable or principal component that explains a certain proportion of the variance in the raw input data. The relative amount of variance explained by a single principal component is associated with its Eigenvalue. Larger Eigenvalues indicate a larger proportion of variance explained. For example, in the provided table, 6 input variables are being used to obtain 6 uncorrelated, new principal component variables. To obtain the first principal component specifically, the following equation will be applied:PC1 = (V1 * 0.07643) + (V2 * 0.13114) + (V3 * 0.15877) + (V4 * 0.79381) + (V5 * 0.48906) + (V6 * 0.28712). Other principal component variables can be calculated using their associated coefficients. In summary, the process of PCA allows for the determination of Eigenvectors which are used to calculate principal components from a linear combination of the input variables.

Generally, the first principal component explains the most variability in
the data

Explained variability decreases with increased PC

Can visualize with a Scree Plot

23

Principal Component Analysis (PCA)

Presenter Notes
Presentation Notes
Again, one of the key uses of PCA is to reduce the dimensionality of your input data by capturing the information content, or variability, in a smaller number of features. The Scree Plot provides a means to visualize the explained variance. Again, larger Eigenvalues indicate more explained variance. In the provided example, PC1 captures 81.7% of the variance, PC2 captures 15.4%, and PC3 captures 2.3%. Cumulatively, PC1 through PC3 capture 99.7% of the variance. So, six variables are reduced to three with only a slight loss in information content.

24

Principal Component Analysis (PCA)

Presenter Notes
Presentation Notes
The two graphs on this page demonstrate the concept of decorrelation. The graph on the left shows the relationship between Variable 1 and Variable 2, which have a clear correlation. In the correlation matrix, the Pearson Correlation Coefficient for these two variables 0.923. So, there is significant correlation. In the graph on the left, I am graphing the first and second principal component. The correlation between these variables is effectively zero, ignoring some rounding error.So, we are capturing variability while removing or minimizing redundant information.

25

Principal Component Analysis (PCA)

Presenter Notes
Presentation Notes
This graph shows a plot of the first two principal components. The red lines indicate the original variables. The direction of the red line is associated with the correlation between the variable and the two principal components whereas the length of the line relates to the magnitude of correlation. For example, based on the Eigenvectors, all six variables are positively correlated with the first principal component. That is why all the red lines are pointing to the right. In contrast, some of the original variables are positively correlated with the second principal component while others are negatively correlated. This is why some of the lines point downward and some point upward.In the graph, each point represents one record or data point from the original dataset mapped to the principal component values.

PCA is limited to linear transformations

KPCA allows for nonlinear combinations

Project data to higher dimensional space (kernel trick)

26

Kernel Principal Component Analysis (KPCA)

Presenter Notes
Presentation Notes
It should be noted that there are some augmented versions of principal component analysis. One option is kernel principal component analysis (KPCA). One issue with principal component analysis is that it only allows for a linear transformation. In order to allow for the generation of nonlinear combinations of the predictor variable, they can first be projected to a higher dimensional space. This is the same “kernel trick” applied within Support Vector Machines that allows for more accurately separated classes that are not linearly separable in the input feature space.

Including a large number of predictor variables can increase model complexity and
reduce model accuracy.

A subset of variables may be desired to reduce model complexity and increase
parsimony even if the large feature space does not negatively impact model
performance.

Feature selection methods select a subset of the existing variables to include in the
model.

Feature reduction methods create new variables from the original predictor
variables.

Principal component analysis is one means to create new variables from input
variables. The resulting principal components will be decorrelated, linear
combinations of the input variables. Principal component analysis is based on the
assumption that variability represent information.

27

Summary of Key Points: Variable Selection

Balancing the Training Data

28

If the training data are not balanced, the algorithm my under-predict or
poorly predict the less common classes

For classification, should have adequate number of samples per class

For regression, samples should cover full range of values of y

29

What is the issue with unbalanced training data?

Presenter Notes
Presentation Notes
One common issue in predictive modeling is that the training data may not be balanced or there may be many more samples or examples of one class in the training set as opposed to other classes. This commonly arises because the classes are not balanced in the actual population. For example, the majority of credit card transactions are legitimate. Thus, the proportion of fraudulent transactions are inherently low. This can result in an issue when trying to generate a model to predict the likelihood that a transaction is fraudulent. For the sake of argument, let’s say that the rate of fraudulent transactions is around 0.001%. This is probably too high. In this situation, a model could just call all samples legitimate and obtain an overall accuracy well above 99%. However, this model would not be useful. Generally, when the training dataset is imbalanced the model tends to under-predict or poorly predict the less common class or classes. This problem is generally worse with an increasing level of imbalance. Unfortunately, it is not always easy to obtain a large number of samples from the minority classes if they are inherently rare in the population. This issue of imbalance can also be an issue for regression problems when some ranges of values for the dependent variable are not common in the population and not well represented in the training set.

Use stratified random sampling
 Strata defined by classes (classification)
 Strata defined by ranges/bins of y (regression)

Randomly under sample majority class(es)
Will lower the number of available samples
May need large dataset

Duplicate minority class examples
Minority class(es) samples are use in the model multiple times

Produce synthetic minority samples
Can be combined with under sampling of majority class(es)
 Synthetic data are generated that are similar to existing samples

30

How can we deal with unbalanced training data?

Presenter Notes
Presentation Notes
A few methods have been proposed to deal with imbalanced training sets. One option is to collect a sample using stratified random sampling as opposed to simple random sampling. This can allow for generating a training set that is artificially balanced as opposed to representing the true proportions in the population. However, this is not always easy to do, especially when one or more classes, or certain ranges of y for a regression problems, are inherently rare. Another option is to under sample the majority class during the training process. Unfortunately, this would require throwing out some of the training data, leading to training on a smaller training set. Alternatively, you could duplicate the minority samples or use them multiple times in the training process. This has the benefit of allowing you to use a larger training set. Instead of just duplicating the minority samples, you may decide to generate synthetic samples for the minority class that are similar to the existing samples but with some added noise. One example is the SMOTE (Synthetic Minority Oversampling Technique) method that uses a combination of under sampling the majority class and generating synthetic samples of the minority class.I generally prefer to duplicate the minority samples to potentially help combat the impact of an imbalanced training set. However, others may disagree with this approach. I have found that such methods may not always yield improvements and that the impact is often case specific. Such methods may not drastically improve overall accuracy but may specifically improve the performance for the minority class or classes. Again, this is likely case specific and may involve some experimentation.

An imbalance in the number of training samples between classes can have a
negative impact on classification accuracy, especially for the minority classes.

Methods are available to generate a more balanced training set.

This is a complex problem that is not always easy to combat.

31

Summary of Key Points: Balancing Training Data

This is the end of this lecture module.

Please return to the West Virginia View Webpage
for additional content.

Presenter Notes
Presentation Notes
Thanks! Hope you found this useful.

	Slide Number 1
	Hyperparameter Optimization
	User-Defined Hyperparameters
	Does the algorithm need optimization?
	Grid Search
	Hold Out
	Leave-One-Out Cross Validation
	k-Fold Cross Validation
	k-Fold Cross Validation with Repeats
	Bootstrapping
	What method should you use?
	What is optimized?
	Summary of Key Points: Hyperparameters
	Variable Selection
	Developing Predictor Variables
	Feature Selection vs. Feature Reduction
	Variable Selection with Variable Importance
	Feature Selection using Random Forests
	Variable Importance with RF
	Boruta
	Principal Component Analysis (PCA)
	Principal Component Analysis (PCA)
	Principal Component Analysis (PCA)
	Principal Component Analysis (PCA)
	Principal Component Analysis (PCA)
	Kernel Principal Component Analysis (KPCA)
	Summary of Key Points: Variable Selection
	Balancing the Training Data
	What is the issue with unbalanced training data?
	How can we deal with unbalanced training data?
	Summary of Key Points: Balancing Training Data
	Slide Number 32

