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Presenter Notes
Presentation Notes
In this module, we return to working with data. Specifically, we will discuss how data can be explored, visualized, summarize, cleaned, and prepared. 

https://commons.wikimedia.org/wiki/File:Earth_Western_Hemisphere_transparent_background.png#filelinks

Visualizing Data



Presenter Notes
Presentation Notes
We will start off with visualizing data using graphs. 


k Graphs

s Summarize variables

“»Explore relationships between
variables

“*Map variables to graphical
parameters
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Presenter Notes
Presentation Notes
In order to visualize data graphically, we can map specific variables to graphical parameters such as position, size, color, shape, etc. A major component of generating graphs is determining how best to represent our data visually. This is the primary focus of this section. We will then turn our attention to specific types of graphs. 

Note that we will not talk about specific graphing and data visualization tools here. Those topics are reserved for the Python and R material. Within Python, I demonstrate the matplotlib library and other associated libraries (e.g., seaborn and pandas). In the R material, I focus on ggplot2.


k& Book Recommendation

++» Leland Wilkinson
*» 15t Edition: 1999

< 2nd Edition: 2005
The Grammar

% Grammar/philosophy for of Graphics
visualizing data

«» Map data to graphical parameters
(aesthetic mappings)

https://www.springer.com/gp/book/9780387245447

https://towardsdatascience.com/a-comprehensive-guide-
to-the-grammar-of-graphics-for-effective-visualization-
of-multi-dimensional-1fg2bg4ed4149b

Leland Wilkinson

The Grammar
of Graphics

Second Edition

@ Springer



Presenter Notes
Presentation Notes
The Grammar of Graphics was proposed by Leland Wilkinson and offers a framework, philosophy, and grammar for visualizing data. A central component of this philosophy is the assignment of data to graphical parameters or defining aesthetic mappings. The Grammar of Graphics has greatly informed effective data visualization and graph design and is also useful for making maps. 

I use this framework in this section to guide the discussion. In the R material, you will see that the ggplot2 package created by Hadley Wickham implements this philosophy. 

https://www.springer.com/gp/book/9780387245447
https://towardsdatascience.com/a-comprehensive-guide-to-the-grammar-of-graphics-for-effective-visualization-of-multi-dimensional-1f92b4ed4149b

k& Book Recommendation

UseR!

Wickham, H., 2016. ggplot2: elegant graphics for data
analysis. springer.

https://hadley.nz/ Hadley Wickham
https://ggplot2-book.org/

Elegant Graphics for Data Analysis

@ Springer



Presenter Notes
Presentation Notes
This is a great text that explains the graphing functionality of ggplot2, which is based on the Grammar of Graphics. Again, this R package is explored in the R material associated with this course. 

https://hadley.nz/
https://ggplot2-book.org/

kI Grammar of Graphics

% Data = Always start with the data, identify the dimensions you
want to visualize.

< Aesthetics = Confirm the axes based on the data dimensions, Coordinate System ‘
FOSIUOHS of various data points in the plot. Also check if an
orm of encoding is needed including size, shage, color, and so = e
on which are useful for plotting multiple data dimensions
% Scale = Do we need to scale the potential values and/or use a Statistics

specific scale to represent multiple values or a range?

Geometric Objects

the data points on the visualization. Should they be points, bars,
lines, and so on?

5w = Do we need to show some statistical measures in the Aesthetics ‘
visualization like measures of central tendency, spread, and/or

+» Facets = Do we need to create subplots based on specific data .
T 5 2 https://www.springer.com/gp/book/9780387245447

% Geometric objects = This would cover the waﬁ we would depict

)
0’0

Coordinate System = What kind of a coordinate system should
the visualization be based on?

https://towardsdatascience.com/a-comprehensive-guide-to-the-grammar-of-
graphics-for-effective-visualization-of-multi-dimensional-1fo2bg4ed4149b



Presenter Notes
Presentation Notes
Based on the Grammar of Graphics, all graphs begin with data. The data scientist must decide what dimensions of the dataset should be visualized in the graph space. 

Aesthetic mappings are then used to visualize these data based on their location in the graph space or their assignment or visualization with a graphical property, such as color, shape, size, etc. The appropriateness of different graphical parameters for visualizing data depends on the data in questions (i.e., nominal, ordinal, or numeric). 

Next, appropriate scales must be defined. This could include ranges in the x- and y-directions, appropriate color ramps and binning methods, size ranges, sets of shapes, etc. You must also decide what geometric objects should be used to represent data. Options include points, bars, such as bar graphs, or lines, such as time series graphs.

We can also include data summarizations and statistics, such as measures of central tendency and/or variability, and confidence intervals. Facets can be used to break the data into multiple plots or maps based on a categorical or grouping variable. Lastly, coordinate systems can be altered. For example, graphs can make use of Cartesian coordinate space or polar coordinates. 

https://www.springer.com/gp/book/9780387245447
https://towardsdatascience.com/a-comprehensive-guide-to-the-grammar-of-graphics-for-effective-visualization-of-multi-dimensional-1f92b4ed4149b

k& Position

* For all levels of measurement

“* Appropriate graph types will
depend on level of
measurement of variables and (#, #)

being explored \

What if you want to show more
than two variables?

Variable 1


Presenter Notes
Presentation Notes
We will now discuss how different graphical parameters can be used to effectively display data. We will begin with position.  

In a graph space, variables can be used to define the position of symbols relative to axes. Most graphs use a two-dimensional Cartesian space with an x- and a y- axis. When designing maps, positions can be defined using latitude and longitude or map projection coordinates. 

As we will discuss in more detail later in this section, mapping a variable to the x-axis and another to the y-axis allows us to visualize the relationship between the two variables. 

Note that some graphs make use of other spaces as opposed to two-dimensional Cartesian space. For example, it is possible to include a third, or z, dimension to map points in 3D space. This can be used to compare the relationship between three variables by plotting points within the volume of a cube. Some graphs make use of polar coordinates, such a pie charts. For maps, a variety of coordinate systems are defined as different map projections. 


B Shape &
»*For nominal data

Y v


Presenter Notes
Presentation Notes
Shape is only appropriate for visualizing nominal variables since there is no implied increasing or decreasing order. For example, how could you represent crime rates for cities using shape? This really wouldn’t make sense. 

Different types of shape-based symbols can be used. Geometric relies on common, generally simple geometric shapes, such as circles, squares, rectangles, ovals, diamonds, stars, and hexagons. Mimetic symbols mimic the feature they are representing, such as the examples provide on the slide. Lastly, pictorial symbols use pictures, such as company logos. 

It is also possible to categorize line features with shapes using repeating geometric shapes along the line segments. 


B Size

“*For ordinal, interval, or ratio data



Presenter Notes
Presentation Notes
Size should only be used to represent ordinal or numeric data since there is an implied order or sequence from small to large. Larger sizes will indicate larger quantities while smaller sizes will indicate smaller quantities. For lines, the line width or thickness equates to size and again is only appropriate for numeric data. Examples of maps that use size include proportional symbol, graduated symbol, and cartograms. 


*For all levels of measurement

“*Proper color choices depend
on level of measurement

10


Presenter Notes
Presentation Notes
Different aspects of color can be used to represent different types of data. 

For example, unordered colors that change by hue (or change by base color) can be used to represent nominal data, as long as no order is implied by the color choices. The top set of circles and top set of lines are examples. 

To use color to represent ordinal or numeric data, an order should be implied. This generally involves increasing the saturation and/or lightness of a base hue, as demonstrated by the middle-set of circles (where saturation is varied) and the bottom set of circles and lines (where lightness is varied). 

It is generally argued the color is overused. Part of the issue is that humans are generally not great at relating changes in saturation or lightness to a change in the magnitude of a quantity. However, color can be effective if used correctly and thoughtfully. 


‘s For ordinal, interval, or ratio data
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Presenter Notes
Presentation Notes
Spacing can be used to represent ordinal or numeric variables but is not appropriate for nominal data since there is an implied ordering. Generally, denser spacing indicates a larger quantity whereas less dense spacing represents a smaller quantity. For lines, the spacing is represented by the length and spacing between dashes. Areal features can be filled with a pattern that varies only by density. 


»For data



Presenter Notes
Presentation Notes
Orientation can be used to represent nominal data but is inappropriate for numeric data, since there is no implied order. To use orientation the same symbol is used to represent a point or fill an areal feature, with only the orientation of the pattern changed. 


E Arrangement

“»For qualitative data
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Presenter Notes
Presentation Notes
Another option is to use arrangement to represent nominal data. In this case, different base patterns with no implied ordering are used.


Comparisons

Graphical Parameter

Nominal

Ordinal

Numeric

(Interval and

Ratio)

Shape

Good

Poor

Poor

Size

Poor

Marginal

Marginal

Color (Hue)

Good

Good

Marginal

Color (Saturation)

Poor

Marginal

Marginal

Color (Lightness)

Poor

Good

Marginal

Spacing

Poor

Marginal

Marginal

Orientation

Good

Poor

Poor

Arrangement

Good

Poor

Poor



Presenter Notes
Presentation Notes
This table was modified from one presented in a textbook focused on map design and geovisualization. It summarizes what graphical parameters are appropriate or best to use for different levels of measurement. Note that numeric includes both interval and ratio data. 

Shape is only appropriate for nominal data since there is no implied ordering. Size, since there is implied ordering, is not appropriate for nominal data but can be used for ordinal or numeric data, since an implied ordering is desired. 

Hue works well for nominal data and can be used for ordinal data if hues are selected to represent some implied ordering. Generally, altering only the hue is avoided for representing numeric data. The color saturation and/or lightness can be used for ordinal and numeric data but are inappropriate for nominal data because an ordering is implied. 

Spacing can be used for ordinal and numeric data while orientation and arrangement are only applicable to nominal data. 



Graphs and Aesthetic Mappings
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Presenter Notes
Presentation Notes
Let’s now explore the aesthetic mappings used in this graph. These data represent county-level means for all counties occurring in the High Plains regions of the United States. 

Elevation, a numeric variable, is mapped to the x-axis position while temperature, also a numeric variable, is mapped to the y-axis position. This allows for the relationship between the two variable to be visualized. Generally, it appears that counties that occur at a higher mean elevation tend to have a lower average mean annual temperature. 

The size of the point symbol is mapped to another continuous variable: percent of the county land area that is forest. Generally, it appears that there might be some correlation here. Counties at higher elevations appear to generally have a larger percentage of forest cover. 

Lastly, an unordered set of hues is used to differentiate the points, which represent counties, by the state in which they occur.

Note that I could have chosen to use different mappings. For example, I could have used changing saturation or lightness to represent percent forest cover and different shapes or point symbols to represent the state in which the county occurs. It is generally a good idea to experiment with different aesthetic mappings to assess the effectiveness for specific data and use cases. 


E Summary of Key Points

» The Grammar of Graphics offers a guide to effectively and appropriately
visualizing data using or aesthetic mappings.

% What (e.g., shape, size, color, spacing, orientation, and
arrangement) is best to represent a specific variable?

Often depends on the variables

< Properly designed graphs take the Grammar of Graphics into account to create
effective and informative data visualizations.
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Describing and Summarizing Data

e —
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Presenter Notes
Presentation Notes
We will now discuss means to describe and summarize data using methods appropriate or meaningful for different data types. 


B Summarizing Categorical Data

“* How many categories?
% Are categories nested?
<+ Number of occurrences by category

“» Percentage of total observations within each category
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Category Percentage
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C
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Presenter Notes
Presentation Notes
For nominal and ordinal data, we may be interested in the number of features that occur in each category or the proportion or percentages of features by category. For example, using the charts in this slide, we may want to count the number of counties by state or the percentage of the counties occurring in each state. 

Note that sometimes categories are nested. For example, we could describe the surface cover within an extent as either water, forest, grass, barren, or developed. Forest could be further subdivided into forest types, such as deciduous, evergreen, and mixed. Developed could be differentiated into residential, commercial, and industrial types. 

Bar charts are generally preferred for displaying counts by categories as opposed to pie charts since humans are better at judging relative lengths as opposed to relative sizes. Generally, you should avoid using pie charts. 

Sometimes, categorical data and associated counts or percentages can better be summarized in a table as opposed to with a graph. 


E Central Tendency (Numeric Data)

s*Mean
u=(2X;)/N

“*Median
Most middle number, 50% percentile, 2" quartile

N/
0‘0

Most common number
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Presenter Notes
Presentation Notes
For numeric data, we are generally interested in understanding the central tendency and the variability in the data. Central tendency relates to the most common, most middle, or most frequent values whereas variability relates to how distributed or dispersed values are within a set of numbers. 

Measures of central tendency include the mean  (sum up all values and divide by the number of records), the median (the most middle value; 50% of the values are below this value and 50% are above), and the mode (the most commonly occurring value).

For example, you could calculate the average or mean of exam scores by adding up all exam scores and dividing by the number of exams.
 
One key issue is that central tendency only describes one aspect of the data. For example, two sets of exam scores could have the same mean or median; however, the range of test scores could be very different. For example, a B average could be obtained by earning Bs on all exams or by earning a more variable mix of scores, such as a mix of Cs and As. As a result, it is important to consider both the central tendency and variability. 

When is it more appropriate to use the median as opposed to the mean? This can be a tricky issue, and many practitioners would disagree on this point. One issue with the mean is that it tends to be more heavily impacted by extremely large or small values in comparison to the median. So, if you don’t want large or small values to have a large effect on your measure of central tendency, the median may be more appropriate than the mean. We will discuss this in more detail in the section on statistical inference. 


k& Variability (Numeric Data) El

“* Range
Maximum — Minimum

“+ Population Variance
02=Z(Xi_”)2/N

4

4

o=sqrt[ 2 (X, — )2/ N]
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Presenter Notes
Presentation Notes
This slide describes measures of variability for numeric data. The range is simply the maximum reported value minus the minimum. This measure tends to be heavily impacted by very large of very small values since it only considers the largest and smallest values. For example, If 20 students in a course took an exam and all earned grades above 70% except for one student, who earned a grade of 15%, this low grade would have a large impact on the resulting range that may make the measure less informative. 

Variance is calculated by subtracting the mean value from each value, squaring the differences, summing the squared difference, then diving by the number of samples. Since the difference is squared, the units of variance will be in the square of the units of the variable of interest. For example, if you are summarizing length measurements in meters, the variance would be in units of square meters. The standard deviation is simply the square root of the variance. Taking the square root will return the original unit of measurement. 



kI Example Data: Seeds

area perm compactness lkernel wkernel asymn lgroove type
Min. :10.59 Min. :12.41  Min. :0.8081 Min. :4.899 Min. :2.630 Min. :0.7651  Min. :4.519 1:70
1st Qu.:12.27 1st Qu.:13.45 1st Qu.:0.8569 1st Qu.:5.262 1st Qu.:2.944 1st Qu.:2.5615 1st Qu.:5.045 2:70
Median :14.36 Median :14.32 Median :0.8734 Median :5.524 Median :3.237 Median :3.5990 Median :5.223 3:70
Mean :14.85 Mean :14.56 Mean :0.8710 Mean :5.629 Mean :3.259 Mean :3.7002 Mean :5.408
3rd Qu.:17.30 3rd Qu.:15.71 3rd Qu.:0.8878 3rd Qu.:5.980 3rd Qu.:3.562 3rd Qu.:4.7687 3rd Qu.:5.877
Max . :21.18 Max. :17.25 Ve 0.9183 Max. :6.675 Max. :4.033 Max . :8.4560 Max. :6.550

21


Presenter Notes
Presentation Notes
This table was generated using the R software and represents a summarization of the variables associated with the Seeds dataset. Note that all numeric data are summarized using the following measures: minimum, 1st quartile, median, mean, 3rd quartile, and maximum. We will discuss quartiles in a later slide. 

For the nominal “type” field, the count of each unique type is provided. Here the codes 1, 2, and 3, are stand-ins for the three different varieties of wheat kernels: Kama, Rosa, and Canadian, respectively. So, this is an example of a number that should be treated as nominal data. 


E Histograms

%+ Univariate graph (shows one variable)

% x-axis: attribute or quantity of interest
% y-axis: frequency or count

Data Values

8 312 297 281 286 25 235 22 204 188 73 IS8 142 427 111 953 804 £49 405 24 485 0.3
ep!



Presenter Notes
Presentation Notes
Histograms are one means to explore the distribution of a single variable and are an example of a univariate graph (i.e., a graph that only shows one variable). The x-axis represents the attribute or quantity of interest, and the y-axis will be the frequency or count. Data ranges are binned and the number of samples within each data range are counted. This allows us to visualize the distribution of the data to assess central tendency, dispersion, skewness, or the occurrence of outliers. 

How the data are binned can have a large impact on how patterns are represented. Smaller bins tend to highlight more local patterns whereas larger bins will represent a more generalized pattern. There is not necessarily a correct bin width. This depends on the patterns of interest and the data being graphed. 


E Kernel Density Plots

%+ Univariate graph (shows one variable)

\/

o = more common or frequent values
% Troughs = less common or frequent values

Miles per Gallon by Cylinder

Mumber of Cylinders

I:Id_... )
5
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Presenter Notes
Presentation Notes
Similar to histograms, kernel density plots are used to show the distribution of a single variable (i.e., are univariate graphs). The x-axis will be the variable of interest and the y-axis will be density, count, or frequency. The curves are created using a kernel density function. Peaks indicate common values and troughs indicate less frequent values. 

You can also use these graphs to compare data distributions for different categories, as shown in the example graph. We will discuss these types of comparisons later. Since histograms and kernel density plots are showing the same patterns and can have the same axes, they can be plotted in the same graph space. 

The kernel density function can be adjusted to show more local or generalized patterns, similar to changing the bin width for histograms. 


k& BoxPlots

. . Maximum
*Minimum = lowest value

\/

X = highest value

%15t Quartile = 25% of data
below, 75% above

3rd Quartile -

3™ Quartile = 75% of data

(0)
below, 25% above Ist Quartile -

\/
0’0 =

range of values between 15t
and 3 quartile

Q
=
<
>
c
4]
=
i
S
)
=
Q
—
av]
s
<
)
G
o
D)
ehn
av]
s
a
Q
&)
S
D]
ol

Minimum

24


Presenter Notes
Presentation Notes
A boxplot is used to summarize the distribution of a numeric variable. It shows the lowest value (minimum), highest value (maximum), and median. Note that the mean is not commonly plotted on box plots.

The 1st quartile is the value that has 25% of the values below it and 75% above. In contrast, the 3rd quartile has 75% of the values below and 25% above. The range of values between the 1st and 3rd quartile is called the interquartile range, or IQR. Note that the median is the 2nd quartile (50% of the values are below it and 50% are above it). The maximum would be the 4th quartile (100% of the values are below it). 


E Comparing Groups with Box Plots

"Miles per Gallon by Cylinder

—

Monthly Runoff
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Presenter Notes
Presentation Notes
Boxplots can be used to compare numeric data between different groups. A nominal variable can be used to define different groups while a numeric variable defines what measure is being compared. On this slide, I am comparing stream runoff by month (runoff is a measure of the amount of water in the stream) and the gas mileage based on number of engine cylinders. 

For the runoff data, generally the stream has less water running through it during the summer months and more during the spring. For the cars data, 4-cylinder vehicles tend to have better gas mileage than 6- or 8-cylinder vehicles. 

I generally find box plots to be the best option for comparing numeric data between groups. 

You may notice that there are some points in the graph space. These plots were created with ggplot2 in R, and this software will plot high values that are more than 1.5 IQR from the 3rd quartile or low points that are more than 1.5 IQR from the 1st quartile as outliers. 


E Comparing Groups with Box Plots and Violin Plots

STATE_NAME

I:l Colorado

Kansas

Montana

’ Nebraska
North Dakota
South Dakota
NDVI by Land Cover Class Utah
Wyoming

Colorado Kansas Montana Nebraska North Dakota South Dakota Utah Wyoming
STATE_NAME

NDVI [{NIR - Red)/(NIR + Red)]

Barren Herbaceous Woodlands
Cover Class



Presenter Notes
Presentation Notes
Note that a violin plot can be a substitute for or included with a box plot. A violin plot is a kernel density plot that has been turned on its side and mirrored. Since the x- and y-axis can be the same for a box plot and violin plot, they can be graphed in the same space. These plots can compliment each other and can provide a lot of collective information. 


Kkl  Box Plot Example: Seeds

“»Compare the box plots on compactness
and kernel width of the 3 seed types



Presenter Notes
Presentation Notes
These are examples of a box plots for the Seeds data comparing the compactness and kernel width for the three wheat varieties: Kama, Rosa, and Canadian. Generally, the Kama and Rosa varieties have similar compactness whereas the Canadian variety is more different form the other two. All three varieties tend to have unique kernel widths. 


E Summary of Key Points: Data and Graph Types E

X summarize the number of features in each category or the
proportion of percentage of features in each category

¢ Numeric data: summarize using different measures of central tendency and
variability.

X and : useful for assessing the distribution of a
single numeric variable

¢ Box plots and violin plots: useful for visualizing the distribution or a single
numeric variable and can compare how the distribution of a numeric variable
varies between groups.
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Exploring Relationships
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Presenter Notes
Presentation Notes
We will now shift our focus to discussing graphical means to explore relationships between variables, including a variety of bivariate or multivariate graphs. 


E Relationships: Categorical

“*Do the categories of one variable correlate or depend on the categories
of another variable?

“*Summarize
“*Crosstabulation between two sets of categories
“Contingency Tables

“»Test
\/

I S B N
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Presenter Notes
Presentation Notes
In order to explore the association between two categorial variables, it is common to use contingency tables. In a contingency table, one variable defines the rows while the other defines the columns. The cells hold the count of features that are included in each combination of levels. If there is no association or dependency between the variables, we should see no pattern in the counts. In the example table, it appears that features in Class A for Variable 1 are also likely to be in Class X for Variable 2. So, there seems to be an association here. 

In short, contingency tables allow us to explore whether the categories of one variable correlate or depend on the categories of another variable. 

From a contingency table, it is possible to perform a statistical test of dependence between two categorical variables using the Chi-Square Test. We will explore this test in a later module. 


E Relationships: Categorical and Numeric

**Do the values of a

~ Miles per Gallon by Cylinder

vary
between different

groups?

<*Summarize
“*Grouped Box Plot
+*Violin Plots

»Test

\/
0’0

“*Analysis of Variance
(ANOVA)
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Presenter Notes
Presentation Notes
Box plots with groups separated and/or violin plots with groups separated offer a graphical means to explore whether the distribution of a numeric variable varies by group. In the example, it would visually appear that 4-, 6-, and 8-cylinder vehicles tend to have different fuel efficiencies. In short, this graphic allows us to explore whether values of a continuous or numeric variable are different between groups. 

In a later module, we will explore statistical tests to compare the values of a continuous variable between groups. For example, the T-Test allows you to compare two groups while Analysis of Variance (ANOVA) allows you to compare more than two groups. 


kd Relationships: Numeric

+»*Is there correlation or
relationships between two
continuous variables?

“*Summarize % ,
Y LT T SR AN
¢ Scatter Plot TV
“*Scatter Plot Matrix vy

“Line Graph

“»Test

\/
0’0

“*Regression



Presenter Notes
Presentation Notes
To visualize the relationship between two continuous variables, it is common to use a scatter plot. On this slide, I have provided a scatter plot for the High Plains data that has the elevation mapped to the x-axis position and the temperature mapped to the y-axis position. It appears as if there is a relationship here. Or, counties with higher mean elevation tend to have lower average mean annual temperatures. However, there is not a perfect relationship here, which suggests that other factors are of importance. For example, latitude may also play a role. 


Ed Example Data: Auto MPG

Number of Cylinders
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Horsepower

Horsepower
o
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Presenter Notes
Presentation Notes
Here are some example scatter plots for the Auto MPG dataset. The plot on the left graphs weight on the x-axis and miles-per-gallon on the y-axis. Generally, this suggests an indirect, negative, or inverse relationship: heavier vehicles tend to have lower fuel efficiencies. In contrast, the graph on the right suggests that weight and horsepower tend to be directly or positively correlated.

Note also that I used unordered colors to show a nominal variable: 4-, 6-, vs. 8-cylinder vehicles. Generally, more cylinders tends to correlate with lower fuel efficiency, more horsepower, and higher weight. 


kG Scatter Plot and Scatter Plot Matrix
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Presenter Notes
Presentation Notes
The scatter plots on the left side of the slide show additional aesthetic mappings. The top graph includes horsepower using the size of the symbol. The bottom graph is for the Gap Minder dataset. Here, gross domestic product per capita (GDP per Capita) is mapped to the x-axis and life expectancy is mapped to the y-axis. Each dot represents a country. The size of the dot represents population, a continuous variable, and the unordered colors represent the continent on which the country occurs, a nominal variable. This is a bleak graph which is worth taking some time to digest. 

Ignoring other aesthetic mappings, scatter plots only allow for the comparison of two numeric variables using position relative to the x- and y-axis. A scatterplot matrix allows for the comparison of a set of variables as a matrix of pairs. So, all variables of interest are graphed pairwise to allow for a visual assessment of correlation. The diagonal axis in the example provides histograms for each included variable. Scatter plot matrices are a common data exploration tool as they allow for correlations between multiple variables to be visually assessed. 


KB Line Graph

Maple Leaf Spectral Reflectance

% Reflectance

Wavelength (nm)



Presenter Notes
Presentation Notes
Line graphs connect data points using a line as opposed to mapping them as individual points. A line graph may be used as opposed to a scatter plot if there is a trend or series. The example provided on this slide is a spectral reflectance curve, which visualizes the amount of radiation that is reflected by an object at different wavelengths. This specific example is a spectral reflectance curve for a maple leaf. The x-axis is the wavelength, which varies from blue to shortwave infrared. The y-axis is percent reflectance. Larger values indicate that a higher percentage of that energy is reflected while lower values indicate less energy is reflected. For example, leaves tend to absorb blue and red wavelengths but reflect a little more green, which explains why they appear green. They also tend to reflect a lot of near infrared radiation, which does not impact how we perceive the leaf since we cannot see near infrared radiation. 

A line graph makes more sense here because there is a trend or varying levels of percent reflectance with changes in wavelength. Plotting a line instead of individual points makes this trend clearer. 


kG Time Series Graph

Percent Renewable Energy

2 X-Axis = Time

+Y-Axis = Continuous Variable



Presenter Notes
Presentation Notes
Some of the most common types of line graphs are time series graphs in which time maps to the x-axis and a variable that changes over time maps to the y-axis. In this specific example, we are mapping the percent of energy used by a country that is generated using renewable methods against time, which allows us to visualize potential trends with time. 

There are many variables that vary with time and are often visualized using a time series graph. Examples include temperature, precipitation, population, stock market trends, etc. 


Kkl Correlation

Correlation = Degree of association between two variables
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Presenter Notes
Presentation Notes
The concept of correlation can be a bit confusing because its meaning can be vague. Specifically, there are different types of correlation between variables. Generally speaking, correlation relates to the degree of association between two variables. Or, if the value of one variable changes, then the value for the other variable is also likely to change.

The graphs on this slide represent different types of correlation. When a pattern or trend is observed when graphing two variables using a scatter plot then this suggests some degree of correlation exists. As these graphs demonstrate, there can be a wide variety of correlations or patterns. All of these graphs represent correlation except for the final graph at the bottom-right position. As the value on the x-axis varies, the values on the y-axis stays the same, indicating no correlation. 


kG  Pearson Correlation

Pearson = measure of linear correlation between two variables

Assumptions

(1) normal distribution, (2) linearity, and (3) homoscedasticity

Equation from Wikipedia: 38


Presenter Notes
Presentation Notes
One specific type of correlation is linear correlation. Linear correlation indicates that the correlation between two variables can be best modeled using a straight line with a positive slope for a positive relationship (one variable goes up, the other goes up) or a negative slope for a negative relationship (one variable goes up, the other goes down). 

One measure of linear correlation is Pearson’s Correlation Coefficient, or Pearson’s r. The equation for this measure looks a bit complicated, but it is actually pretty simple. For each data point, the mean for Variable 1 is subtracted from the Variable 1 value. This is then multiplied by the difference between the Variable 2 mean and Variable 2 value for this sample. The result for each data point is then summed for all data points. This is the numerator of the equation. The denominator is effectively the product of the standard deviation of the two variables. 

Pearson’s Correlation Coefficients will range from -1 to 1. A value of -1 indicated a perfectly negative linear correlation whereas a value of +1 indicates a perfectly positive linear correlation. Values near zero indicate no correlation. 

Note that this measure is designed to specifically assess whether a linear correlation exists. This is not a generic measure to assess any form of correlation. It also has some assumptions. We will discuss statistical assumptions in detail in a later module. 

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

kG Spearman Correlation

Spearman = measure of monotonic correlation based on
ranks

Assumption

(1) monotonic relationship

Equation from Wikipedia: 39


Presenter Notes
Presentation Notes
Spearman’s Rank Correlation, or Spearman’s rho, offers another means to assess correlation between two variables. In this case, it is not assumed that the correlation is linear. However, it is assumed that it is monotonic. This means that an increasing or decreasing pattern in one direction is assessed. This measure would be misleading if the correlation or pattern is not monotonic, such as a relationship that increases to a value then decreases, such as a parabolic shape. 

This measure relies on the ranks of the data points as opposed to the actual data values. Generally, two variables would be considered to be more correlated when the ranks of the two variables are similar for the same data point. 

Since Spearman’s Rank Correlation does not assume a normal distribution in the data, it is considered a nonparametric measure of monotonic correlation. We will discuss the concept of parametric vs. nonparametric tests in a later module. 

https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

k& Kendall Correlation

Kendall = measure of rank correlation based on sorted order
= Ordered the same way

Discordant = Not ordered the same way

Assumption

(1) monotonic relationship

Equation from Wikipedia: 40


Presenter Notes
Presentation Notes
Kendall’s Tau offers another measure of nonparametric, monotonic correlation between two variables. This measure is based on the number of concordant (Variable 1 and Variable 2 have the same rank for a specific data point) and discordant (Variable 1 and Variable 2 do not have the same rank for a specific data point) pairs or data points. 

Spearman’s rho and Kendall’s Tau tend to be related. However, they offer different means to assess for a monotonic relationship using ranks and nonparametric methods. 

https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient

Correlation Matrix

PInCrv

ProCrv
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Presenter Notes
Presentation Notes
When you have more than two numeric variables for which you want to compare correlation, this can be accomplished using a correlation matrix in which each pair of variables is compared separately. Since comparing Variable 1 to Variable 2 is the same as comparing Variable 2 to Variable 1, only half of the matrix needs to be populated. 

On this slide, I have included an example graphic of a correlation matrix from one of my own studies in which we compared the correlation between different variables that are used to describe local topographic or terrain characteristics using Spearman’s Rank Correlation. In this graph, darker red indicates a stronger negative correlation (one variable goes up, the other goes down) whereas darker blue indicates a positive correlation (one goes up, the other goes up). The bottom diagonal cells all show a correlation of 1 because the variable is being compared with itself. By definition a variable is perfectly correlated with itself. 


kI Example Data: Seeds
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Presenter Notes
Presentation Notes
The outputs presented on this page provide correlations using the Pearson and Spearman methods for the numeric variables included in the Seeds data. Note that the entire matrix has been populated, so measures repeat on the opposite side of the diagonal. 

Again, larger negative values indicate a stronger negative correlation. For example, as kernel compactness increases, kernel asymmetry tends to decrease. In contrast Kernel length and kernel width tend to be highly positively correlated.


kG Example Data: Seeds
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Presenter Notes
Presentation Notes
This slide provides a visualization of the Spearman’s Rank Correlation measures for the Seed data. Larger circles indicate a stronger positive or negative monotonic correlation based on ranks. Darker red indicates a stronger negative correlation, and darker blue indicates a stronger positive correlation. 

Generally, this plot suggests many of the variables are positively correlated. However, Asymmetry tends to be negatively correlated with the other variables, other than groove length. 


kG Measuring Nonlinear or Non-Monotonic Correlation

Available online at www.sciencedirect.com
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N OS The paper states that the mutual information carried by the rank sequences that are obtained from the original two sequences
is a good measure of nonlinear correlation. Based on that, the nonlinear correlation information entropy (NCIE) is proposed for
* 3 measuring the general relationship of a multivariable data set. NCIE uses a number in the closed interval [0, 1] to indicate the
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Presenter Notes
Presentation Notes
As described above, Pearson's Correlation specifically assesses linear correlation whereas Spearman’s and Kendall’s Correlation assess monotonic correlation based on ranks, In other words, all of these measures assess correlation that is represented as decreasing or increasing in one direction. However, there are other forms of correlation, such as an oscillating pattern. 

The small graph provided on this page represents a strong relationship between two variables that is not monotonic, or increasing in one direction. Instead, as the variable mapped to the x-axis increases, the variable mapped to the y-axis also increases until the x-variable reaches a specific value. At that point, as the variable mapped to the x-axis increases, the variable mapped to the y-axis decreases. So, this pattern would represent a correlation, but not a monotonic correlation. How are such relationships assessed?

Unfortunately, measures of non-linear or non-monotonic relationships are more limited and there is not a general consensus as to the best or most appropriate method. The paper highlighted on this slide presents one proposed method. Another option is to fit a function to the data that matches the relationship for which you are interested in assessing correlation. For example, the graph shown on this slide could be represented using a polynomial equation. Oscillating patterns might be modeled using a sin or cosine curve. You can then assess how well this mathematical function approximates the relationship. 

Such methods are outside the scope of this course. However, I wanted to make it clear what the Pearson, Spearman, and Kendall measures are designed to assess regarding certain types of correlation: linear in the case of Pearson and monotonic in the case of Spearman and Kendall. Other types of correlation exist that these methods are not designed to measure. In short, it is important to understand what is meant by correlation in the context of interest and in the context of the metrics used to assess it. 


kG Correlation vs. Causation

E Web Object

Select this object and click
the Web Object button to edit

tylervigen.com

gfuriau.c corelqti
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Presenter Notes
Presentation Notes
A common mistake is to conclude that a correlation between two variables indicates one variable causes a response in the other variable. Relationships between two variables do not always imply that changes in one variable causes changes in the other. Also, correlations are not always meaningful. Correlation does not imply causation. The website linked on this slide provides some interesting examples of spurious correlations. Here, the graphics indicate that a there is a correlation or relationship between the variables. However, this is purely coincidental and meaningless.

When you do observe a correlation that is not spurious or meaningless, this does not necessarily imply causation. For example, you may find that there is a positive correlation between skin cancer rates in a geographic area and the number of oranges consumed by individuals living in that area. However, the likely cause of this correlation is that both skin cancer and orange consumption are correlated with sun exposure since sun exposure can lead to skin cancer and oranges tend to grow in warm, sunny climates. 

So, be careful when making assumptions of causation when you observe a correlation between variables. 


kI Dependent and Independent Variables

“*Dependent
Variable = Variable
that depends on or
re(sipon s to the
independent
variable

“*Independent
Variable = Variable

that impacts or
causes a response
in the dependent
variable



Presenter Notes
Presentation Notes
When you are creating a graph, how do you decide which variable to map to the x-axis and which to map to the y-axis? Generally, the independent variable is mapped to the x-axis and the dependent variable is mapped to the y-axis. The dependent variable is the variable that depends on or responds to the independent variable whereas the independent variable impacts or causes a response in the dependent variable. 

In the example graph, it makes since to map elevation to the x-axis since temperature is likely partially dependent on elevation as opposed to elevation being partially dependent on temperature. 

Sometimes it is not clear which variable is the dependent variable and which is the independent variable. For example, you may simply want to visualize the correlation and not identify a dependent and independent variable. In such situations, which variable is mapped to the x- vs. y-axis is somewhat arbitrary. 

When time is one of the variables being explored, it is commonly mapped to the x-axis to generate a time series graph, and it is assumed that the other variable is dependent on or changes with time. However, there are situations where time should not be mapped to the x-axis.

In later modules in the class, we will discuss linear regression and predictive modeling. Generally, these techniques are used to predict a dependent, or y, variable using one or multiple independent, or x, variables. In these cases, the dependent variable should be mapped to the y-axis. 




E Summary of Key Points: Exploring Relationships E

< The dependency or relationship between two categorical variable can be summarized in a
contingency table.

< Box plots can be used to visualize the difference in the distribution of a numeric variable
between groups.

% Correlation between continuous variable can be visualized using scatter plots.

< For more than two variables, additional aesthetic mappings can be used, such as size to
show another numeric variable or color to how a numeric or nominal variable.

< The Pearson’s Correlation is a measure of linear correlation. Spearman and Kendall
correlation are a measure of monotonic correlation based on ranks.

% Assessing relationships that are not linear or not monotonic are generally more complex

% Not all correlations are meaningful. Correlation does not imply causation!
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Please return to the West Virginia View Webpage
for additional content.



Presenter Notes
Presentation Notes
Thanks! Hope you found this useful. 
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