
Image from NASA:
https://commons.wikimedia.org/wiki/File:Earth_Western_
Hemisphere_transparent_background.png#filelinks

Version Control
Methods in Open Science

Presenter Notes
Presentation Notes
In this module, we will explore the concept and application of version control as it applies to research and code development projects. We will also discuss the creation of README files using Markdown.

https://commons.wikimedia.org/wiki/File:Earth_Western_Hemisphere_transparent_background.png#filelinks

Version Control

2

Manage and track changes to directories, projects,
websites, documentation, research projects, etc.

Keep track of changes from multiple editors

3

Version Control

Presenter Notes
Presentation Notes
Version control software allows you to keep track of changes made to a directory (such as a folder on your computer) or code/files associated with a project, a website, documentation, and/or a research project. A history of changes is tracked so that it is possible to revert back to older versions of the file(s) or data. It is also possible to create copies, experiment with the content or code, then merge the results back into the main project.

Further, version control can allow for multiple editors of files and can keep track of who made changes and allow all copies of the files/data associated with the project to be synchronized across different devices and cloud repositories.

In short, version control software allows for better management of directories, files, and data. For example, when writing a document, it is common to save changes by creating multiple versions of the file as it is edited (e.g., document1, document2, document_revision, document_final, document_final2, etc.). Version control provides much cleaner means to track changes and, for large projects with or without multiple contributors, is a cleaner way to work.

Keep track of changes

Allow collaboration

Revert to older version

Save to a remote location

Experiment with changes outside of the main branch

Integrate or reject changes made by others

4

Version Control Uses

Presenter Notes
Presentation Notes
This slide provides examples of some of the uses of version control software. Version control allows for tracking changes, collaboration, reverting to older versions of files/data, saving and backing up files to a remote location, experimentation on a copy of the data that can then be merged back to the main copy if desired, and integration or rejection of changes made by others.

Version control software

Free and open-source

Scalable, small footprint, and fast

Available on all operating systems

Command line interface and GUI

For Windows: Git + Bash emulator

5

Git

https://git-scm.com/

Presenter Notes
Presentation Notes
There are different software tools that allow for version control. Here, we will discuss Git. Git is currently free and open-source. It is generally scalable for small projects to large projects with many files and/or editors. It generally has a small footprint in regard to the storage used to keep track of changes and versions. It is available for use on all operating systems and can be accessed within the Bash UNIX shell. On Windows, you can install Git along with a Bash emulator. The link on this page can be used to download and install Git. There is also a GUI for Git; however, we will not explore that option here.

https://git-scm.com/

Commit = stores the current contents of the
index, a set of changes, in a new commit along
with a message from the user describing the
changes
Index = cache where changes are stored
before they are committed
Stash = another cache where changes can be
stored until they are ready to be added to the
index and an eventual commit
Working tree = the current branch in your
workspace
Branch = a set of linked version histories or
commits
Master = the default name for the first branch
or main branch in the version history
Merge = joining two or more commit histories

HEAD = a pointer to the most recent commit
on the current branch (i.e., your current
location within the version history)
Tracked = files either in the index cache or
not yet added to it
Workspace = local copy of a Git repository
Local repository = another term for where you
keep your copy of a Git repository on your
local machine
Remote repository = a secondary copy of a Git
repository where you push changes for
collaboration or backup
Origin = the default name for a remote
repository

6

Terminology

https://opensource.com/article/19/2/git-terminology

Presenter Notes
Presentation Notes
This slide summarizes some key terminology related to version control and Git in particular. The text was derived from the link provided on the slide. We will now talk through some of the key terminology used.

A commit represents a save point in which the state of the files are recorded. Changes made to the files are cached to the index when running the git add command. When a commit is made, the changes stored in the index are recorded as part of the version history. Again, think of this as a snapshot of the state of the files. Note that it is also possible to save changes without committing by using the stash cache. These changes can later be added to the index then applied with a commit. The working tree represents the current status of your workspace. This allows you to see what changes have been made and what updates will be applied at the next commit based on what has been added to the index cache.

Note that in a project or directory it is not necessary to track all files. For example, you may not track changes made to data files that are stored in the directory but are just being used to test code or perform experiments. When changes to a file are monitored, these files are said to be tracked. If changes are not monitored, then these files are untracked.

In order to allow for changes to be made to the files or project outside of the main version, branches can be generated. The branch will make a copy of the state of the files relative to a specific commit. Note that the main branch is generally termed the master. Once a branch is made outside of the master branch, it is possible to make changes to the files and save commits that do not impact the master branch. For example, this might be done to add new functionality to a software tool. Since major changes are being made, the developer can perform experiments and make commits outside of the main branch. If it is later decided that these changes should be integrated into the main branch, then the branch can be merged with the main branch. There are options for how the two version histories of merged branches are consolidated.

The HEAD is the term use for the most recent commit on the branch that is currently active.

It is also possible to link your local project to a remote version. A local copy of the project, files, or directory is called a workspace or local repository. The copy saved remotely is known as the remote repository. The default name applied to a remote repository to which a local repository is associated is the origin.

7

Components of Version Control with Git

Main Branch
Another Branch
Revert or Restore Commit

Initiate

Presenter Notes
Presentation Notes
This diagram provides a description of the concepts of commits, the main branch, a branch, and reverting back or restoring to a prior commit.

The green dot represents the state of the files when the version control process is first initiated, or this represents the state of the files, or the initial reference point that all later changes are referenced to. You can also think of this as a baseline. All yellow dots represent commits where changes are documented for all files that are being tracked. Each commit represents a set of changes and generally will have a message associated with it that is used to note the changes made for later interpretability.

The red line represents the main branch. In contrast, the blue line represents another branch. This branch was initiated at a specific commit from the main branch. All subsequent commits on this branch do not impact the main branch until it is merged back in with the main branch. At this point, changes made in the main branch and additional branch must be consolidated or reconciled in the form of a new commit.

It is also possible to revert to a prior commit to remove or undo existing changes. For example, you could revert the main branch to a prior commit in order to undo the impact of merging the changes from the other branch. Since even reverts are tracked, you could also later restore these changes if desired.

$ git init = initialize a repository

$ git clone = clone repository to a new directory

8

Getting and Creating Projects

https://git-scm.com/docs

Presenter Notes
Presentation Notes
We will now explore some common commands used to track changes and make commits. The syntax shown here represents Git commands implemented using Bash. Note that desktop software tools are available to use Git in a GUI environment. However, we will only explore the CLI here.

First, to initiate a folder or directory to track, you will need to navigate to this folder then use the git init command to initiate the first saved state. This will create a hidden .git folder within the directory. You may have to turn on hidden files in your file explorer to see this folder. The directory can be changed from the command line and Bash using the cd (change directory) command.

It is also possible to clone an existing directory or folder in which changes are being tracked to a new folder.

$ git add = add files and changes to the index

$ git status = show status of working tree

$ git diff = compare two commits or commit
and current working tree (changes that have
been added to the index but not yet committed)

$ git commit = record change to the
repository (snapshot of version history)

$ git restore = restore or revert to state at a
specified commit

$ git rm = remove files from working tree and
from the index

$ git reset = reset current HEAD to the
specified state (a specific commit on a specific
branch)

9

Taking a Snapshot and Keep Track of Changes

https://git-scm.com/docs

Presenter Notes
Presentation Notes
To add changes made since the last commit to the index, you can use the git add command. You can check the status of the working tree using git status. This will list out all changes that will be tracked at the next commit, or all changes that have been added to the index using add. Once a commit is made, all changes will be tracked and calling git status should indicate that no changes are in the index.

Again, to actually create a save point, you use git commit. This command will also require that a message be provided (e.g., -m “Fixed the for loop error”), which can aid in helping you document what changes were made. I find that git add, git status, and git commit are the commands I use most often.

The git diff command is used to compare the difference between two commits or a commit and the current working tree (i.e., changes that have not been committed yet). The git restore command is used to restore or revert all tracked files or specific tracked files to a prior state, as defined by a prior commit, while git rm will remove files form the working tree and index so that changes will not be tracked. Lastly, git reset will reset the current HEAD, or most recent commit on the current branch, to a defined state or commit in the version history.

$ git branch = list, create, or delete branches

$ git checkout = switch branches or restore working tree files (clear
index)

$ git switch = switch between branches

$ git merge = merge two or more development histories or branches
together

10

Branching and Merging

https://git-scm.com/docs

$ git branch ‘Name of new branch’
$ git branch ‘Name of branch to switch to’

Presenter Notes
Presentation Notes
You can save a branch to work outside of the main branch using git branch. You can switch between branches or restore the working tree files to a prior state using git checkout while git switch is used to specifically switch between branches.

Lastly, git merge is used to merge two or more development histories together, such as merging changes made within a branch to the main branch. When a merge is made, changes between the branches must be reconciled to record a single state to the new commit.

Link local Git project to a remote
copy

Back up to a server or the cloud

Allow for collaboration

11

Remotes

Collaborator
2Collaborator 1

Collaborator
3

Remote Repository

Presenter Notes
Presentation Notes
As already mentioned, it is possible to link a local repository to a remote repository to back up the project or allow collaboration. We will now explore how this process works using GitHub specifically.

A git repository (repo) hosting system

Manage repositories

Cloud-based

Free and paid account options

Add collaborators

12

Using GitHub

https://github.com/

Presenter Notes
Presentation Notes
First, Git and GitHub are not the same thing. Git is a version control software tool, as discussed above, while GitHub is a hosting system/service that can be used to establish a remote repository. You do not need to use Git to use GitHub and you do not need to use GitHub to use Git locally. Note that there are other repository hosting services. We will discuss GitHub here because it is commonly used and has free options.

GitHub is used to manage repositories, can be linked to local repositories to serve as a remote repository, supports collaboration, is cloud-based, and offers both free and paid accounts. Although purchasing a paid account does add functionality, I have found that the free version is adequate for my work.

GitHub is cloud-based, so your data and project are backed up on a remote, secure server.

fetch = retrieve latest commits from the remote;
changes can then be compared using diff then
merged with local copy using merge

pull = retrieve latest commits from the remote
and merge with local copy (i.e., update local
copy); this combines fetch and merge

push = send local commits and changes to the
remote repository

$ git remote add origin ‘URL to remote’

$ git pull ‘remote name’ ‘branch name’

$ git push ‘remote name’ ‘branch name’

$ git push origin master
13

Using Remotes

Presenter Notes
Presentation Notes
In order to associate your local repository with a remote repository hosted on GitHub, you must first add a remote. This can be accomplished using the git remote add command. The default name for a remote repository is origin, and you can connect to it using a unique URL, which GitHub will generate for you.

Once a connection is made, you can pull content from the remote repository to the local repository using the git pull command. This will require you to provide the name of the branch on the remote repository to pull from and the name of the branch on the local repository that you wish to add a commit to. Again, it is common to use the name origin as the name of the remote repository. So, git pull origin master would commit the content of the remote origin branch to the local main branch.

Note that git pull combines the functions of git fetch and git merge. Or it will both pull changes from the remote and then merge them with the specified branch of the local repository.

In order to push changes up to the remote repository, you can use the git push command. Again, you will need to provide the name of the remote repository branch that you want to save to and the local repository branch that you want to copy to the remote. Generally, you will want to add all changes to the index (git add) then commit the changes (git commit –m “Your message here”) before pushing to the remote so that the most recent changes or commit made for the local repository is pushed to the remote.

Fork = create a copy of someone else's repository

Pull Request = once you have made changes, you can send them back
to the originator. If the originator would like to integrate your
changes, they can merge them with the original

14

GitHub as a Remote

Presenter Notes
Presentation Notes
If you would like to make a copy of another developer’s or scientist’s GitHub repo, you can create a fork. A fork generates a copy of that repo under your account. You can then work with the files, make changes, and save commits. You can even make a local copy of the repository to work with.

If you would like the originator of the repo to consider integrating in your changes or some of your changes, you can then make a pull request. The originator can then review your changes and merge some of them or all of them into the original copy.

Forking and pull requests are a key component of how GitHub supports collaboration. Since changes made in your forked copy do not impact the original repo, the original is protected from edits and the owner of the repo maintains control of the project. However, the owner can then implement changes made by others by reviewing pull requests and merging changes.

Merge pull requests

Invite collaborators

Add or remove collaborators

Make repo public or private

Delete repo

15

GitHub as a Remote

Presenter Notes
Presentation Notes
As the owner of a remote repo on GitHub, you can merge changes associated with pull request submitted by others, invite collaborators so that they can work with and make commits to the original repo (note that this is different from forking a repo since you are allowing others to work with and change your original copy), add or remove collaborators, make a repo publicly viewable or private, and delete your repos and associated content.

Version control is used to maintain an edit history.

These methods are valuable for experimenting with changes that you may or may
not want to merge back into the main project.

These methods are valuable for collaborating with others.

Local repositories can be linked to remote repositories for backup and collaboration.

Git is one technology used for version control.

GitHub is an example of a remote repository service.

16

Summary of Key Points

Documentation and Markdown

17

Presenter Notes
Presentation Notes
We will now explore methods used to document code with a focus on GitHub repos.

Include information about your repository

Often created using Markdown

README.md

18

README

Presenter Notes
Presentation Notes
README files are generally used to explain data, code, and/or deliverables. For example, if you create a dataset for a client, you may ship the dataset in a compressed folder and include a README file to explain the data and the naming conventions. This README file is commonly a plain text file (TXT). However, you could also include documentation as a text document (e.g., Word doc), PDF, or HTML webpage. TXT files are commonly used because they can be viewed on most systems.

On GitHub, a README file should be included in the main directory of the repository. The content of this file will define what is displayed on the landing page for the remote repo. In order to generate well formatted landing pages, as opposed to just loading plain text, it is common to use a markup language that can be rendered with defined formatting. This is commonly accomplished using Markdown. Markdown is a mark up language (similar to HTML used on websites) that allows text typed in a plain text document to be rendered with formatting. Markdown is generally very simple and easy to use.

Markdown is commonly stored in a .md file, which is just a plain text file. So, GitHub repos will commonly have a README.md file in the main directory.

Create README files

Create documents, reports,
and presentations

Share your results for
reproduceable science

Create demos

Create webpages

19

Markdown

Presenter Notes
Presentation Notes
Markdown has many uses. Again, it is used to create README file in GitHub. See the example GitHub repo file structure in the provided image. However, Markdown can also be used to render documents, reports, presentations, demos, and webpages.

In this course, we will use Markdown to create the README files associated with GitHub repos. We will also use Markdown to format text within Jupyter Notebooks.

Syntax Tags Result

This is some text. <p></p> Regular text

Italic text or _Italic text_ <i></i> Italic text

Bold text or __Bold text__ Bold text

[A
link](http://www.wvview.org/) <a> Link

superscript^2^ or subscript~2~
<sup</sup> and

 Superscript or Subscript

~~strikethrough~~ <s></s> Strikethrough

Header 1 <h1></h1> Header level 1

Header 2 <h2></h2> Header level 2

Header 3 <h3></h3> Header level 3

Header 4 <h4></h4> Header level 4

Header 5 <h5></h5> Header level 5

Header 6 <h6></h6> Header level 6

20

Formatting Text

Presenter Notes
Presentation Notes
There are variants of Markdown. Here, we will focus on Markdown used within GitHub.

Text formatting is defined using special characters. Please see the examples in the table for plain text, italicized text, bolded text, links, superscripts, subscripts, strikethroughs, and different levels of headers. It is also possible to use formatting tags, which are generally the same as the associated HTML tags. Generally, the Markdown syntax is more concise than using formatting tags.

21

Formatting Text

Presenter Notes
Presentation Notes
This slide provides examples of Markdown syntax, associated formatting tags, and the resulting output. These examples were created within a cell within a Jupyter Notebook, which can accept, interpret, and render Markdown.

Syntax Result
* Item 1

* Sub-Item 1
* Sub-Item 2

* Item 2
* Item 3

Unorder list

1. Item 1
* Sub-Item 1
* Sub-Item 2

2. Item 2
3. Item 3

Order list

Column 1 Name | Column 2
Name

--------------------|---------------------
R1C1 |R1C2
R2C1 |R2C2

Table

22

Lists and Tables

Item 1
Item 2
Item 3

Item 1
Item 2
Item 3

<table>
<tr>
<th>Header 1</th>
<th>Header 2</th>
<th>Header 3</th>

</tr>
<tr>
<td>Row 1 Col 1</td>
<td>Row 1 Col 2</td>
<td>Row 1 Col 3</td>

</tr>
<tr>
<td>Row 2 Col 1</td>
<td>Row 2 Col 2</td>
<td>Row 2 Col 3</td>

</tr>
</table>

Presenter Notes
Presentation Notes
The table on this slide provides formatting examples for unordered lists, ordered lists, and tables. I have also provided examples of associated formatting tags. Note that the Markdown syntax is generally more concise. Also, note the space between the formatting symbols and the text. For example, there must be a space between the asterisk and the text in order to render the result as an item in an unordered list. Without a space, the result would be italicized text.

Syntax Tags Result
> This is a blockquote <blockquote></blockquote> Blockquote

`y = 2` <code></code> Inline code
--- <hr> Horizontal rule

![Alt text](Link or URL) Image

23

Others

Note: it is not currently possible to add videos within GitHub README
markdown. Can link to video using text or an image.

Presenter Notes
Presentation Notes
This slide provides example for blockquotes, code, horizontal rules, and image links.

Code that is included within a Markdown cell will not be executed. Instead, the code will be rendered and formatted as code text as opposed to plain text. This is often used to render example code.

Links to images can be URLs, which point to where a photo or image is stored on a webpage or server, or links to local files using a folder path. If an image will be used on a GitHub repo landing page, it must be included in the repo as a file or hosted on a webpage or at an accessible URL and referenced using that URL. Links to files on your local machine will not work from GitHub.

Lastly, it is not currently possible to place a video on a GitHub landing page, such as a link to a YouTube video. Instead, an image or text could be linked to the video hosted on an external site. The link can then launch the video in a new tab.

Render to HTML

Render to PDF

24

Rendering

Presenter Notes
Presentation Notes
Outside of GitHub, Markdown can be used to create documents and presentations. It can be used within Jupyter Notebooks. In fact, all the Python and R pages associated with this course were generated using Jupyter Notebooks or R Markdown with Markdown and code cells. To make the Python webpages, I then render the Jupyter Notebook files to Markdown files. The Markdown files are then rendered to websites using a Python library.

Create documents, reports, and
presentations

Share your results for
reproduceable science

Create demos

Create webpages

25

R Markdown

Presenter Notes
Presentation Notes
RStudio allows for experiments and code to be created and stored in R Markdown files (.Rmd). These files allow for Markdown to be used to create formatted text and the inclusion of code blocks that can be executed with the results displayed in the flow of the document. Markdown files can then be rendered to documents, PDFs, presentations, and/or websites. Again, this is how I generated the R modules for this course.

Note that you may need to install some other software in order to render to some formats. For example, rendering to PDF will require LaTex.

Markdown is a simple language used to generate formatted text and content.

Notebooks can include Markdown cells along with code cells.

Both Python and R make use of Markdown.

Notebooks can be rendered to Markdown files.

Markdown files can be rendered to PDF documents and HTML files.

Markdown can be used to create README files for use in projects and GitHub
repos.

Markdown is a useful tool for generating results that are transparent and
reproduceable.

26

Summary of Key Points

This is the end of this lecture module.

Please return to the West Virginia View Webpage
for additional content.

Presenter Notes
Presentation Notes
Thanks! Hope you found this useful.

	Slide Number 1
	Version Control
	Version Control
	Version Control Uses
	Git
	Terminology
	Components of Version Control with Git
	Getting and Creating Projects
	Taking a Snapshot and Keep Track of Changes
	Branching and Merging
	Remotes
	Using GitHub
	Using Remotes
	GitHub as a Remote
	GitHub as a Remote
	Summary of Key Points
	Documentation and Markdown
	README
	Markdown
	Formatting Text
	Formatting Text
	Lists and Tables
	Others
	Rendering
	R Markdown
	Summary of Key Points
	Slide Number 27

