
Image from NASA:
https://commons.wikimedia.org/wiki/File:Earth_Western_H
emisphere_transparent_background.png#filelinks

Semantic Segmentation
Geospatial Deep Learning

Presenter Notes
Presentation Notes
This module will expand upon the last module by discussing additional uses of convolutional neural networks (CNNs). As was discussed in the prior module, CNNs, and 2D convolution specifically, allow for the modeling of spatial patterns. Such techniques allow for images to be classified or labelled.In the geospatial sciences, we are often interested in predicting or mapping the location of specific features within an image. Fortunately, CNNs have been expanded and modified to handle such problems.

https://commons.wikimedia.org/wiki/File:Earth_Western_Hemisphere_transparent_background.png#filelinks

Semantic Segmentation of topoDL Dataset with UNet (ArcGIS Pro)

topoDL Dataset

YouTube Video

Paper

Example

https://github.com/maxwell-
geospatial/wvview_geodl_examples

Maxwell, A.E., Bester, M.S., Guillen, L.A.,
Ramezan, C.A., Carpinello, D.J., Fan, Y.,
Hartley, F.M., Maynard, S.M. and Pyron,
J.L., 2020. Semantic Segmentation Deep
Learning for Extracting Surface Mine
Extents from Historic Topographic Maps.
Remote Sensing, 12(24), p.4145.

http://www.wvview.org/research.html

https://youtu.be/4HZ41mFhWws

2

Presenter Notes
Presentation Notes
This slide and the following slides describe the provided semantic segmentation examples. We have provided one example, as described on this slide, which uses ArcGIS Pro and does not require any coding. All other examples make use of PyTorch, Python, and R. Since semantic segmentation is the primary focus of this class since it has many uses in our field, most of the examples are associated with this topic and module.

https://github.com/maxwell-geospatial/wvview_geodl_examples
http://www.wvview.org/research.html
https://youtu.be/4HZ41mFhWws

Semantic Segmentation of topoDL Dataset with Unet
(PyTorch/Python/R)

topoDL Dataset

YouTube Video

Paper

Example

https://github.com/maxwell-
geospatial/wvview_geodl_examples

Maxwell, A.E., Bester, M.S., Guillen, L.A., Ramezan, C.A.,
Carpinello, D.J., Fan, Y., Hartley, F.M., Maynard, S.M.
and Pyron, J.L., 2020. Semantic Segmentation Deep
Learning for Extracting Surface Mine Extents from
Historic Topographic Maps. Remote Sensing, 12(24),
p.4145.

https://youtu.be/wtwOSWsZ3xM

http://www.wvview.org/research.html

3

https://github.com/maxwell-geospatial/wvview_geodl_examples
https://youtu.be/wtwOSWsZ3xM
http://www.wvview.org/research.html

Semantic Segmentation of Inria Dataset with DeepLabv3+

Inria Dataset

YouTube Video

Paper

Example

https://github.com/maxwell-
geospatial/wvview_geodl_examples

Maggiori, E., Tarabalka, Y., Charpiat, G. and Alliez, P.,
2017, July. Can semantic labeling methods generalize
to any city? the inria aerial image labeling benchmark.
In 2017 IEEE International Geoscience and Remote
Sensing Symposium (IGARSS) (pp. 3226-3229). IEEE.

https://project.inria.fr/aerialimagelabeling/b

https://youtu.be/Ac20oEYYdMM

4

https://github.com/maxwell-geospatial/wvview_geodl_examples
https://project.inria.fr/aerialimagelabeling/b
https://youtu.be/Ac20oEYYdMM

Multiclass Semantic Segmentation of LandCover.ai Dataset with Unet++
(PyTorch/Python/R)

LandCover.ai Dataset

YouTube Video

Paper

Example

https://github.com/maxwell-
geospatial/wvview_geodl_examples

https://youtu.be/HxyBvugGqaw

Boguszewski, A., Batorski, D., Ziemba-Jankowska, N.,
Zambrzycka, A. and Dziedzic, T., 2020. LandCover. ai: Dataset for
Automatic Mapping of Buildings, Woodlands and Water from
Aerial Imagery. arXiv preprint arXiv:2005.02264.

https://landcover.ai/

5

https://github.com/maxwell-geospatial/wvview_geodl_examples
https://youtu.be/HxyBvugGqaw
https://landcover.ai/

Multiclass Semantic Segmentation of wvlcDL Dataset with Unet++
(PyTorch/Python/R) (Incomplete Training Data)

wvlcDL Dataset

YouTube Video

Paper

Example

https://github.com/maxwell-
geospatial/wvview_geodl_examples

http://www.wvview.org/research.html

Maxwell, A.E., Strager, M.P., Warner, T.A., Ramezan,
C.A., Morgan, A.N. and Pauley, C.E., 2019. Large-Area,
High Spatial Resolution Land Cover Mapping Using
Random Forests, GEOBIA, and NAIP Orthophotography:
Findings and Recommendations. Remote Sensing, 11(12),
p.1409.

6

https://youtu.be/aL-S0wyNZhE

https://github.com/maxwell-geospatial/wvview_geodl_examples
http://www.wvview.org/research.html
https://youtu.be/aL-S0wyNZhE

Instance vs. Semantic Segmentation

Image Semantic Segmentation

Scene Label = Cat Instance Segmentation
7

Presenter Notes
Presentation Notes
In the last section, we discussed how CNNs can be used for labelling or categorizing entire images. For example, the image above could be labeled as an image of cats.However, this does not tell us where in the image cats occur. Semantic segmentation address this issue. The goal here is to perform a classification at the pixel-level as opposed to the scene- or image-level. These are the types of problems that we are commonly interested in in the geospatial sciences. For example, land cover classification requires pixel-level classification as opposed to scene-level classification. This is the focus on this section.Instance segmentation consists of identifying each instance of the class separately. For example, both cats in the image could be identified as belonging to the cat class and as separate instances of this class. Semantic and instance segmentation techniques have been developed that rely on convolutional neural networks. In this module, we will focus on semantic segmentation. This is still an active area of research. Although there are a variety of methods, I will focus this discussion on a few methods that are commonly used: Fully Convolutional Neural Networks (FCNs), UNet, UNet++, and DeepLabv3+.

8

Uses of CNNs

Presenter Notes
Presentation Notes
This figure conceptualizes the difference between scene classification/labeling, object detection, semantic segmentation, and instance segmentation.

Label image as
representation of a
category or multiple
categories

Scene Classification

https://csc.lsu.edu/~saikat/deepsat/ 9

Presenter Notes
Presentation Notes
This is an example of a scene classification problem, as was discussed in the prior module. Here, each image is predicted to a category without any localization or pixel-level classification.

https://csc.lsu.edu/%7Esaikat/deepsat/

Scene Classification

10

Presenter Notes
Presentation Notes
This confusion matrix represents an assessment of a scene classification problem, where each sample is an entire image as opposed to pixels or other sampling units. In contrast, each assessment unit for semantic segmentation would be individual pixels as opposed to entire scenes or images.

Hoeser et al.

Hoeser, T. and Kuenzer, C., 2020. Object detection
and image segmentation with deep learning on
Earth observation data: A review-part I: Evolution
and recent trends. Remote Sensing, 12(10), p.1667.

Hoeser, T., Bachofer, F. and Kuenzer, C., 2020.
Object Detection and Image Segmentation with Deep
Learning on Earth Observation Data: A Review—Part
II: Applications. Remote Sensing, 12(18), p.3053. 11

Presenter Notes
Presentation Notes
If you are interested in learning more about semantic segmentation, I recommend this series of articles by Hoeser et al.

Fully Convolutional Neural Networks

12

Fully Convolutional ANNs

Series of convolutional
layers, activation functions,
and max pooling to learn
features at different scales
Some means of

upsampling
Sigmoid or softmax

activation function to get
probabilities
No fully connected layers

or flattening

No fully connected layers
or flattening

13

Presenter Notes
Presentation Notes
How can we obtain pixel-level classifications using convolutional neural networks? Generally, the first component of semantic segmentation architectures are very similar to the architectures of those designed for scene classification. Here, 2D convolution and max pooling are used to learn spatial filters at different scales. Also, the ReLU activation function is generally used to add nonlinearity. It is also possible to incorporate batch normalization. In the case of scene classification, the final feature maps generated by the last convolutional layer are then flattened to a 1D vector and fed to fully connected layers to predict the scene-level membership to a defined set of classes. However, this will not work for semantic segmentation. For semantic segmentation when using fully convolutional neural networks (FCNN), after spatial patterns are learned at multiple scales using the 2D convolution and max pooling operations, the resulting feature maps are not flattened to a 1D vector and no fully connected layers are used. Instead, the data are upsampled to generate pixel-level predictions. The first, downsampling component of the model that uses 2D convolution to learn patterns is often termed the encoder or backbone while the upsampling component is termed the decoder. Fully Convolutional ANNs (FCNs) commonly make use of either upsampling or transpose 2D convolution to perform the upsampling or decoding. Then, class probabilities can be generated at each pixel using a sigmoid function, in the case of binary classification, or softmax, in the case of multiclass classification. It is also possible to obtain class logits.In order to make use of feature maps generated at different scales and from prior convolutional layers, not just the last convolutional layer, skip connections can be included. This allows for feature maps to be fed to a later process as opposed to the next set of convolution and max pooling operations. For multiple feature maps from different layers to be combined or concatenated, they must have the same length in the spatial dimensions. This is why some means of upsampling is required.

Fully Convolutional ANNs

14
64,128,128

256,32,32

128,64,64

512,16,16

Feature Maps, Height, Width
Batch Norm (2D)
ReLU

Max Pool (2x2, Stride=2)

2D Conv (3x3, Stride = 1)

Upsample

Skip Connection + Upsample
Skip Connection

C
ha

nn
el

s,
12

8,
12

8

C
la

ss
es

,1
28

,1
28

2D Conv (1x1, Stride = 1)

Presenter Notes
Presentation Notes
This slide further conceptualizes a FCNN architecture. Similar to CNNs for scene labeling tasks, a series of 2D convolution and max pooling layers are used. In the example, each 2D convolution layer uses a kernel size of 3x3 and a stride of 1. If padding is used, then this will maintain the size of the tensor in the spatial dimensions. Following each 2D convolution block, batch normalization and a ReLU activation function are applied. Following the 4 2D convolution blocks and all associated operations, no flattening or fully connected layers are used. Instead, a final 2D convolution layer with a kernel size of 1x1 and a stride of 1 is used. This allows for transforming the feature maps into class logits. In order to learn from feature maps from all prior 2D convolution blocks as opposed to just the final 2D convolution block, skip connections are used. Skip connections allow for bypassing components of the model. They allow for feature maps generated at different locations in the architecture to be concatenated or stacked into a single multi-channel tensor. In order to perform this stacking, all the input tensors must have the same shape in the spatial dimensions. This is why some means of upsampling the data are required.

Fully Convolutional ANNs

Long, J., Shelhamer, E. and Darrell, T., 2015. Fully
convolutional networks for semantic segmentation. In
Proceedings of the IEEE conference on computer vision
and pattern recognition (pp. 3431-3440).

15

Presenter Notes
Presentation Notes
Long et al. (2015) first introduced the fully convolutional ANN architecture.

Final Feature Maps Class Logits

Does not impact spatial dimensions of the array

Model can accept images of varying sizes

16

1x1 2D Convolution

Presenter Notes
Presentation Notes
Why used 1x1 2D convolution to obtain the final class logits? This is simply a means to change the number of channels without changing the spatial dimensions of the data or augmenting the pixel values using values in adjacent cells. In other words, a set feature map values at a pixel location can been reduced to a set of class logits. These logits can then be passed through a sigmoid or softmax activation to obtain the positive class probability or all class probabilities, respectively. Using 1x1 2D convolution as opposed fully connected layers has an additional added benefit: this allows the architecture to accept images of varying sizes in the spatial dimensions. Since no flattening is applied, there is no issues with varying length vectors being provided to fully connected layers. So, FCNs can be trained using and make inferences to images of varying sizes.

Used for “deconvolution” in decoder

Upsample feature maps

Similar to resampling in GIS/remote sensing

Different methods are available:
Nearest
Linear
Bilinear
Bicubic
Trilinear

Upsampling

17

Presenter Notes
Presentation Notes
A variety of techniques are available to upsample images or feature maps. For example, resampling methods, such as nearest neighbor, bilinear interpolation, or cubic convolution, can be used. These are the same techniques commonly used in remote sensing and GIS operations to change the cell size of an image or raster grid using near cell values in the original array. The earliest FCN architectures used upsampling methods. Upsampling methods are not strictly “deconvolution” since they do not reverse the convolution process or use kernels with trainable weights. Upsampling methods, such as nearest neighbor, do not have trainable weights. They are simply mathematical interpolation/estimation operations used to estimate cell values from near cell values in the original array.

Used for “deconvolution” in
decoder

Upsample feature maps

Have trainable weights, similar
to traditional 2D convolutional
layers

Transpose Convolution

https://towardsdatascience.com/what-is-transposed-
convolutional-layer-40e5e6e31c11

18

Presenter Notes
Presentation Notes
Another means to increase the size of tensors in the spatial dimensions is transpose convolution.In contrast to upsampling methods, transpose convolution allows for the learning of weights to upsample the feature maps. Note that this is not strictly a “deconvolution” operation, which simply reverses the convolution process to obtain back the original data with the original spatial resolution, or number of rows and columns. Similar to 2D convolution used in the encoder, transpose convolution allows for the learning of weights associated with kernels of a defined size. As a result, these layers are trainable. In order to upsample the array in the spatial dimensions, the array size is increased by adding zeros in between values or existing pixels and applying padding. The number of zero measurements and amount of padding added depends on the original stride and padding used. Kernels and weights are then learned using the new feature maps to upsample the image. Please see the blog post linked on this slide for a detailed explanation of transpose convolution.

https://towardsdatascience.com/what-is-transposed-convolutional-layer-40e5e6e31c11

Encoder-Decoder Architecture

19

UNet

https://arxiv.org/abs/1505.04597

Ronneberger, O., Fischer, P. and Brox, T., 2015, October. U-net:
Convolutional networks for biomedical image segmentation. In International
Conference on Medical image computing and computer-assisted
intervention (pp. 234-241). Springer, Cham.

20

Presenter Notes
Presentation Notes
The UNet method was first introduced in 2015 and builds upon FCNs. This slide provides a reference to the paper that introduced UNets. Although originally developed for medical image segmentation, it has been shown to have many applications.

https://arxiv.org/abs/1505.04597

Encoder or Downsampling or
Contraction

1. 2D Convolution (3 x 3), stride
of 1
Activation (ReLU)
Batch Normalization

(sometimes)
Padding

2. Dropouts (sometimes)

3. Max Pooling (2 x 2), stride of 2

UNet Components

Decoder or Upsampling or Expansion
1. Deconvolution with transpose

convolution (2 x 2), stride of 1
2. Skip connections
3. 2D Convolution (3 x 3), stride of 1
4. Final layer = 2D convolution (1 x

1), stride of 1
 Sigmoid, softmax, or no

activation

21

Presenter Notes
Presentation Notes
This slide outlines the key components of UNets. There are different flavors of UNets, and the example provided here does not follow the method outlined in the original paper.The encoder, downsampling, or contracting component is a traditional CNN architecture, similar to those we discussed in the last module. 3x3 2D convolution layers with a stride of 1 and 2x2 max pooling with a stride of 2 are used to produce feature maps at different scales. It is common to use ReLU as the activation function for the convolution layers; however, other activation functions can also be used, such as leaky ReLU. Batch normalization is used to reduce overfitting, and padding is used to maintain the array size and edge pixels. It is also possible to include dropouts, but that is not always applied. The decoder, upsampling, or expansion component works like a traditional CNN, but in reverse. Transpose convolution, or sometimes upsampling methods, are used to increase the size of the array in the spatial dimensions. Skip connections are used to concatenate the feature maps from the encoder component to the decoder component at the same level or the level having the same array size. This allows for incorporating the information learned in the encoder into the later stages of the learning process occurring in the decoder. Additional 2x2 2D convolution with a stride of 1 are used to learn new filters in the decoder blocks. The 2D convolution is generally followed by an activation function, such as ReLU, and sometimes batch normalization. Finally, 2D convolution with a 1x1 filter and a stride of 1 is used to perform the classification at the pixel- or cell-level to obtain logits. To obtain the positive class probability for binary classification, the sigmoid function is used whereas softmax will be used for multiclass problems. UNet has a symmetrical architecture. Or, the number of upsampling or encoder operations or blocks are equal to the number of downsampling or decoder blocks. This allows for skip connections were feature maps from the associated downsampling block are concatenated with the operations at the upsampling block to maintain more spatial detail and localization. Since the feature maps being concatenated via the skip connections have the same size in the spatial dimensions as the tensors they are being concatenated with, there is no need to incorporate upsampling techniques into the skip connections. This is in contrast to the FCNN architecture already discussed.

22

UNet

1
2
8

3
8
4

1
2
8

6
4

1
9
2

6
4

1
6

4
8

1
6

3
2

9
6

3
2

2
5
6

2
5
6

1
0

2D Convolution 3x3, Stride =1 +
Batch Normalization + ReLU

Concatenation

1D Convolution, Stride= 1 +
ReLU

Encoder to Decoder Skip Connection

2x2 Max Pooling, Stride = 2

2D Transpose Convolution 2x2,
Stride = 2

1
2
8

1
2
8

1
6

1
6

3
2

3
2

6
4

6
4

3 1
0

Output

Input

(128, 128)

(32, 32)

(64, 64)

(16, 16)

(8, 8)

(128, 128)

(32, 32)

(64, 64)

(16, 16)

*Array sizes
assume padding

Presenter Notes
Presentation Notes
This slide further describes the structure of a UNet. The encoder consists of a series of blocks. Each block includes a pair of 2D convolution layers, each using a kernel size of 3x3 and a stride of 1. In the example, each 2D convolution is accompanied by batch normalization and a ReLU activation function. In the encoder, the size of the array in the spatial dimension is reduced between each block using max pooling with a kernel size of 2x2 and a stride of 2. There are a total of 4 decoder blocks. The block between the encoder and decoder is generally termed the bottleneck. It also consists of double-2D convolution. To undo the reduction in array size in the spatial dimensions resulting from the max pooling operations in the encoder, the decoder uses 2D transpose convolution with a kernel size of 2x2 and a stride of 2. This results in each encoder block and associated decoder block accepting tensors with the same sizes in the spatial dimensions. In order to make full use of the spatial context information learned in the encoder blocks, the learned feature maps from the encoder are concatenated with the upsampled feature maps form the decoder using skip connections. Since the arrays already have the same sizes in the spatial dimensions, there is no need to apply an upsampling method in the skip connections. Similar to FCNs, the final logits are obtained using 1x1 2D convolution with a stride of 1.

23

UNet

1
2
8

3
8
4

1
2
8

6
4

1
9
2

6
4

1
6

4
8

1
6

3
2

9
6

3
2

2
5
6

2
5
6

1
0

1
2
8

1
2
8

1
6

1
6

3
2

3
2

6
4

6
4

3 1
0

(128, 128)

(32, 32)

(64, 64)

(16, 16)

(8, 8)

(128, 128)

(32, 32)

(64, 64)

(16, 16)

*Array sizes
assume padding

(3,128,128) (16,128,128)
(16,64,64) (32,64,64)
(32,32,32) (64,32,32)
(64,16,16) (128,16,16)
(128,8,8) (256,8,8)

(256+128,16,16) (128,16,16)
(64+128,32,32) (64,32,32)
(32+64,64,64) (32,64,64)
(16+32, 128,128) (16,128,128)
(10,128,128)

Presenter Notes
Presentation Notes
This slide highlights the sizes of the tensors at each operation or block in the UNet architecture. Blue indicates the input image shape while green represents the output shape. In this case a 3-band input is provided and 10 class logits are returned. Orange indicates the shapes associated with the 2D convolution operations in the encoder and decoder blocks while gray maps to max pooling operations and yellow maps to 2D transpose convolution. Make sure you understand why these array sizes are obtained throughout the architecture.

Segmentation Models
https://github.com/qubvel/segmenta

tion_models
https://github.com/qubvel/segmenta

tion_models.pytorch

ArcGIS Pro
https://developers.arcgis.com/pytho

n/api-reference/arcgis.learn.toc.html

UNet Implementations

24

Presenter Notes
Presentation Notes
Currently, there are implementations of UNet available using PyTorch, Tensorflow/Keras, and ArcGIS Pro. The PyTorch modules will show how to build a UNet architecture by subclassing nn.Module. We will also explore the Segmentation Models library, which simplifies the implementation of semantic segmentation methods using PyTorch. Note also that UNet is a flexible framework, so a variety of different architectures, augmentations, and/or backbones can be used. For example, sometimes dropouts are incorporated.

https://github.com/qubvel/segmentation_models
https://github.com/qubvel/segmentation_models.pytorch
https://developers.arcgis.com/python/api-reference/arcgis.learn.toc.html

UNet++

Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N. and Liang, J.,
2018. Unet++: A nested u-net architecture for medical image
segmentation. In Deep learning in medical image analysis
and multimodal learning for clinical decision support (pp. 3-
11). Springer, Cham.

Convolution layers between
encoder and decoder

Redesigned skip paths

Dense skip connections

Deep supervision

25

Presenter Notes
Presentation Notes
Since the introduction of UNet, many researchers/developers have proposed alterations and expansions of the originally proposed structure. For example, UNet++ was proposed in 2018.This structure is designed to improve the localization of UNet for mapping fine features. Instead of using simple skip connections between the encoder and decoder paths, additional convolutional operations are performed. This is just one example of an augmentation or expansion of the original UNet architecture.

26

UNet++

Max pooling downsample

Transpose upsample

Skip connection (adjacent)

Skip connection (not adjacent)

Convolution layers

Presenter Notes
Presentation Notes
The graphics presented here attempt to characterize the key components of UNet++. The gray circles represent 2D convolutional operations. The outer operations represent the base UNet architecture with a series of convolution blocks in the encoder and decoder. The array sizes in the encoder are decreased using max pooling with a kernel size of 2x2 and a stride of 2 while array sizes in the decoder are increased using transpose convolution with a kernel size of 2x2 and a stride of 2. UNet++ augments the base architecture of UNet by incorporating additional 2D convolution blocks along each skip connection path. Also, additional 2D transpose convolution operations are performed between these paths. Along each path, skip connections are included to bypass intermediate 2D convolution blocks. Specifically, the feature maps from the first 2D convolution block is concatenated before each subsequent 2D convolution block along the path, and all results from each prior 2D convolution block are bypassed to the final 2D convolution block.The idea here is to reduce the semantic gap between the encoder and decoder with additional 2D convolution blocks between the encoder and decoder and with the skip connections and dense connection structure.

Accurate = Average across
all branches

Fast = Select one model
from all branches

Allows for model pruning

27

Deep Supervision in UNet++

Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N. and Liang, J., 2018.
Unet++: A nested u-net architecture for medical image segmentation.
In Deep learning in medical image analysis and multimodal learning
for clinical decision support (pp. 3-11). Springer, Cham.

L3

L2

L1

L4

Presenter Notes
Presentation Notes
Another component of UNet++ is the ability to implement deep supervision. The UNet++ architecture can be thought of as a nested structure of UNets of varying size or number of encoder and decoder blocks. Each of these nested UNets can be combined with a final 1x1 2D convolution layer to obtain separate predictions. The predicted logits can be averaged across these nested levels to potentially improve the performance. Alternatively, one of the nested UNets, as opposed to the largest Unet, could be used to make the final prediction, which could increase the speed of the computation and inference. This is essentially a means to prune the structure. Using multiple predictions within this nested structure allows for deep supervision. However, it is not necessary to implement deep supervision when using UNet++.

Based on UNet

Expands UNet
for instance
segmentation

Three UNets:
border, segment,
and inner

UNet-ID

https://www.mdpi.com/2072-
4292/12/10/1544
https://zenodo.org/record/
3926831#.XzhMbOhKiUk

Wagner, F.H., Dalagnol, R., Tarabalka, Y., Segantine, T.Y., Thomé, R. and Hirye, M., 2020. U-Net-Id, an Instance Segmentation
Model for Building Extraction from Satellite Images—Case Study in the Joanópolis City, Brazil. Remote Sensing, 12(10), p.1544. 28

Border

Segment

Inner

U
N

et
U

N
et

U
N

et

2D Conv 2D ConvUNet
Ouputs

Presenter Notes
Presentation Notes
UNet has also been applied to instance segmentation problems. For example, UNet-ID uses multiple UNets to detect individual instances of features by learning to identify features, feature boundaries, and feature interiors separately. We will discuss this method in more detail in the following section in the context of instance segmentation.

https://www.mdpi.com/2072-4292/12/10/1544
https://zenodo.org/record/3926831#.XzhMbOhKiUk

Spatial Pyramids

29

Atrous convolution
Add zeros in kernel to expand kernel

size
Increases the size of the receptive

field
Learn spatial patterns at varying

scales
Dilation Rate = 1
Dilation Rate = 3
Dilation Rate = 5

30

Convolution with Dilation

Presenter Notes
Presentation Notes
In order to increase the effective field of view or receptive field of convolutional operations and in order to learn spatial context information over larger extents, some semantic segmentation architectures make use of dilation or atrous convolution. The idea is to insert zeros into the kernel filters to increase the distance between cells included in the operation. This is generally controlled using a dilation rate. In the example image, the red cell represents the cell that is being processed, which is included in all the kernel windows. The purple cells are included when using a dilation rate of 1. This is equivalent to a normal 3x3 kernel. The blue cells are included when the dilation rate is 3, and the green cells are included when the dilation rate is 5. In all cases, the number of cells with trainable weights is 9. The difference is in the spacing between the included cells, which again is controlled by the dilation rate. The dilation rate determines the number of inserted zeros. It is also possible to use dilated convolution with more then 9 trainable weights in the kernel. In such configurations, the dilation rate within the kernel would control how many zeros are inserted between cells that have trainable weights. In, summary, the key idea behind atrous convolution is to change the effective field of view, or receptive field, by incorporating offsets in the moving window, which is controlled by a dilation rate. So, windows can be made up of pixels that are not adjacent, allowing for a larger effective field of view.

DeepLabv3+

1. Use backbone network with dilation
to generate feature maps

2. Atrous Spatial Pyramid Pooling to
obtain multi-scale spatial context
information. Consists of:

 1x1 convolution
3x3 convolution with different

dilation/atrous rates
Image pooling for global context

3. 1x1 convolution and 3x3 convolution
to learn additional filters

4. Upsampling to resize feature maps

5. Concatenation to stack feature maps

Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F. and
Adam, H., 2018. Encoder-decoder with atrous separable
convolution for semantic image segmentation. In
Proceedings of the European conference on computer
vision (ECCV) (pp. 801-818).

https://github.com/tensorflow/models/tree/master/rese
arch/deeplab

https://towardsdatascience.com/review-deeplabv3-
atrous-convolution-semantic-segmentation-
6d818bfd1d74

https://developers.arcgis.com/python/guide/how-
deeplabv3-works/

31

Presenter Notes
Presentation Notes
As an example of an architecture that incorporates atrous convolution, we will explore the DeepLabv3+ architecture, which originated at Google and was subsequently open-sourced. This algorithm is one of the different architectures in the DeepLab family. Similar to UNet, DeepLabv3+ relies on an encoder/decoder architecture. However, it incorporates atrous convolution and spatial pyramid pooling. The key components of the model are described on this slide. First, an encoder or backbone is used to extract kernels at vary spatial resolutions. Some of the kernels in this architecture will used atrous convolution. There is also a second atrous spatial pyramid pooling (ASPP) component that is designed to further capture spatial context information at multiple scales. We will discuss this component on the next slide. 1x1 and 3x3 convolution is used to learn additional filters, and upsampling and concatenation are used to standardize the sizes of feature maps in the spatial dimension and merge them into a single tensor, respectively. Please have a look at the links provided for additional details. The paper that introduced the method is also referenced here.

https://github.com/tensorflow/models/tree/master/research/deeplab
https://towardsdatascience.com/review-deeplabv3-atrous-convolution-semantic-segmentation-6d818bfd1d74
https://developers.arcgis.com/python/guide/how-deeplabv3-works/

Atrous Spatial Pyramid Pooling

ASPP

Allows for multi-scale
context information to be
combined/learned without
significantly increasing the
architecture size and
number of parameters

Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F. and Adam,
H., 2018. Encoder-decoder with atrous separable
convolution for semantic image segmentation. In
Proceedings of the European conference on computer
vision (ECCV) (pp. 801-818).

32

1x1 Conv

3x3 Conv
with Dilation

Image
Pooling

3x3 Conv
with Dilation

3x3 Conv
with Dilation

1x1 Conv{ {
Concat

Presenter Notes
Presentation Notes
Atrous Spatial Pyramid Pooling (ASPP) allows for the aggregation of spatial context information across scales and also the incorporation of global information from the image. Feature maps from prior layers are passed through a series of operations including 1x1 2D convolution, multiple 3x3 2D convolutions with different dilation rates, and image pooling to incorporate global context information.The learned feature maps are then concatenated and passed to a 1x1 2D convolution layer to further abstract the data. Again, the goal here is to learn spatial context information at different scales and increase the size of the receptive field.

DeepLabv3+

33

Input
Dilated

CNN

1x1 Conv

3x3 Conv
with Dilation

Image
Pooling

3x3 Conv
with Dilation

3x3 Conv
with Dilation

1x1 Conv

1x1 Conv

Upsample
by 2

Concat 3x3 Conv
Upsample

by 4 Output

{ {
Concat

Presenter Notes
Presentation Notes
This slide conceptualizes the components of DeepLabv3+. The input data are passed through a backbone encoder network that incorporates dilated convolution. The feature maps learned in the backbone are then passed to the ASPP module. The learned feature maps from the ASPP module are then concatenated and passed through a 1x1 2D convolution layer. Lastly, upsampling is applied so that the feature maps have the same size in the spatial dimensions as the feature maps to which they will be concatenated in the decoder component of the model. In the decoder component of the model, the feature maps from the encoder backbone are passed through a 1x1 2D convolution layer. The feature maps from the ASPP module that have been upsampled are then merged with these feature maps via concatenation. The layers then pass through a 3x3 2D Convolution layer and then upsampled by a factor of 4 to obtain the pixel-level prediction at the spatial resolution of the input image. This architecture has the same purpose as the UNet architecture: to make predictions at the pixel-level. However, the architecture is different. As described here, one of the key differences is the use of atrous convolution and the ASPP module. It should be noted that atrous convolution can be integrated into other architectures, even UNets. This is not a technique specific to the DeepLab family. However, it is a key component of the DeepLab algorithms.

Backbones

34

Can use CNN backbones as encoder component

Allows for using pretrained weights

Encoder weights can be:
 Frozen
Trained
Trained during a subset of epochs

Examples = ResNet, DenseNet, InceptionNet, EfficientNet, MobileNet,
DPN, VGG

35

Backbones

Presenter Notes
Presentation Notes
The backbone or encoder component of semantic segmentation models are equivalent to the convolutional layers of a CNN for scene labeling tasks. As a result, different CNN architectures can be used as the encoder component of semantic segmentation models. Since famous or commonly used architectures, such as those listed on this slide, have been trained using large datasets (e.g., ImageNet), this allows for pre-trained weights to be used in the backbone component of semantic segmentation architectures. Such transfer learning techniques may allow for improved model performance and/or faster training time. It is possible to freeze the weights/parameters in the backbone, initialize them with the pre-trained weights but still update them during the training process, or update them during only a subset of the training epochs.

36

Example: UNet with VGG-16 Backbone

2D Convolution 3x3, Stride =1

Concatenation

1D Convolution, Stride= 1

Encoder to Decoder Skip Connection

2x2 Max Pooling, Stride = 2

2D Transpose Convolution, Stride = 2

Conv 1-1
Conv 1-2

Conv 2-1
Conv 2-1

Conv 3-2
Conv 3-3

Conv 3-1

Conv 4-2
Conv 4-3

Conv 4-1

Conv 5-2
Conv 5-3

Conv 5-1

Input

O
u
t

Presenter Notes
Presentation Notes
This slide conceptualizes using a VGGNet-16 architecture as the backbone or encoder for a UNet. Only the convolutional components are used; the fully connected layers are not included. Since skip connections are used, it is necessary to match the component of the VGGNet-16 architecture with the correct size in the spatial dimensions with the associated decoder block. This will be demonstrated in the PyTorch examples. Once this architecture is defined, it is possible to initialize the model using pre-trained weights for the encoder and random weights for the decoder.

37

Example: UNet with ResNet-18 Backbone

Conv 7x7, Stride = 2

Max Pooling, Stride = 2

Conv 3x3, Stride = 1
Conv 3x3, Stride = 1
Conv 3x3, Stride = 1
Conv 3x3, Stride = 1

Conv 3x3, Stride = 2

Conv 3x3, Stride = 1

Conv 3x3, Stride = 2

Conv 3x3, Stride = 1

Conv 3x3, Stride = 1

Conv 3x3, Stride = 1

Conv 3x3, Stride = 1
Conv 3x3, Stride = 1

Conv 3x3, Stride = 2
Conv 3x3, Stride = 1

Conv 3x3, Stride = 1

Conv 3x3, Stride = 1

2D Conv 7x7, Stride=2

Max Pooling, Stride = 2

2D Convolution 3x3, Stride =1

2D Convolution 3x3, Stride = 2

Concatenation

1D Convolution, Stride= 1

Identity Connection

Convolution in the Residual Block
performed with stride = 2

Encoder to Decoder Skip Connection
2D Transpose Convolution, Stride = 2

I
n

O
u
t

In

Presenter Notes
Presentation Notes
This slide conceptualizes using a ResNet-18 architecture as the encoder for UNet. Again, only the convolutional components are used, not the fully connected layers. The stages of the ResNet must be matched with the correct decoder block so that the tensor sizes in the spatial dimensions match. Also, the first set of operations in the ResNet decrease the size of the input tensor. As a result, an initial set of 2D convolution layers are used in the first encoder block while components of the ResNet architectures are used in the subsequent encoder blocks. I will demonstrate implementing a ResNet architecture as the encoder for UNet in the PyTorch examples.

Practical Considerations

38

39

Segmentation Models

https://github.com/qubvel
/segmentation_models.pyt
orch

https://github.com/qubvel/segmentation_
models

Presenter Notes
Presentation Notes
In the PyTorch modules, I will demonstrate how to build a UNet from scratch by subclassing the nn.Module class defined by PyTorch. I will also demonstrate how to used pre-trained backbones or encoders. However, it can be difficult to build all semantic segmentation architectures from scratch, apply CNN-backbones, and load pre-trained weights. This is especially true as architectures become more complicated. If you want to be able to use a variety of semantic segmentation architectures, defined architecture components (such as the number of encoder and decoder blocks), use common backbones as the encoder component (such as VGGNet, ResNet, or MobileNet), and use pre-trained weights, I highly recommend checking out the Segmentation Models package. This package is available for both PyTorch and Keras/Tensorflow. I will demonstrate it in the PyTorch modules.

https://github.com/qubvel/segmentation_models.pytorch
https://github.com/qubvel/segmentation_models

Use some common backbones as
encoder

Allow for application of pre-trained
weights

Decrease overfitting and training
time

May require certain number of
input channels

Freeze and unfreeze weights

Train subset of layer weights

Backbones and Weights

40

Presenter Notes
Presentation Notes
The Segmentation Models package allows for easily using different backbones and pre-trained weights. Again, this will be demonstrated in a PyTorch module.

Image chips of defined shape: (3,
512, 512), (3, 256, 256), (3, 128,
128), etc.

Label/classified image with 1
numeric code per class and same
shape as image chips

Common formats: JPEG, PNG, TIFF

Data Requirements

41

Presenter Notes
Presentation Notes
In order to perform semantic segmentation, you will need to generate image chips and associated masks where each code in the mask represents a category. For example, a binary classification would require a mask where each cell is coded as 0 or 1. The background class would be coded to 0 while the positive class would be coded to 1.These chips are commonly saved in JPEG, PNG, or TIFF format in a folder structure that clearly links the image and its associated mask. For example, the images may be saved in an “image” folder while the masks are saved to a “label” or “mask” folder, and each image and its associated mask would have the same file name.Some commonly used shapes are listed on this slide. Note that larger tensors will take more time and computational power to process. They will also need to be fed through the network during training using a smaller batch size. The largest batch size possible will depend on your computer hardware, such as GPU VRAM, and the complexity of the semantic segmentation model. ArcGIS Pro and QGIS have tools available for generating image chips and associated masks from geospatial datasets.

Using ArcGIS Pro

https://pro.arcgis.com/en/pro-app/tool-reference/image-
analyst/export-training-data-for-deep-learning.htm

https://developers.arcgis.com/python/api-
reference/arcgis.learn.html 42

Presenter Notes
Presentation Notes
ArcGIS Pro provides the Export Training Data for Deep Learning Tool that can be used to create image chips for training, testing, and validation. This tool can also be accessed via ArcPy and the arcgis.learn module. It is available with a valid Spatial Analyst or Image Analyst extension license.This tool can generate image chips for a wide variety of tasks including scene labeling, semantic segmentation, object detection, and instance segmentation.

https://pro.arcgis.com/en/pro-app/tool-reference/image-analyst/export-training-data-for-deep-learning.htm
https://developers.arcgis.com/python/api-reference/arcgis.learn.html

Using QGIS

https://github.com/PratyushTripathy/QGIS-Plugin-
Produce-Training-Samples-For-Deep-Learning 43

Presenter Notes
Presentation Notes
Plugins have also been developed for QGIS to generate image chips. This provides an open-source and free alternative to ArcGIS Pro.

https://github.com/PratyushTripathy/QGIS-Plugin-Produce-Training-Samples-For-Deep-Learning

44

R

Presenter Notes
Presentation Notes
It is also possible to produce custom scripts to generate image chips. As part of this class, I will demonstrate R functions that my lab group built that can generate raster masks and chips, create lists of chips and masks, and describe the dataset. These functions makes use of the terra R package and work well with geospatial data.

Dataset Prep

Generate chips

Mask with unique numeric code for each
class

Select chip size

Augmentations applied to image and mask

Subclass PyTorch Dataset class

45

Presenter Notes
Presentation Notes
In the provided PyTorch examples and in order to read in the image chips and associated masks, I will subclass the PyTorch DataSet class to load in custom data. Some common processing tasks include reading in files, converting to numpy arrays, converting to torch tensors, moving data between the CPU and GPU, changing the order of the dimensions, and rescaling from 8-bit to float (0 to 1). Again, we have and will continue to discuss DataSets and DataLoaders in detail in the PyTorch examples.

Binary vs. Multiclass

Sigmoid = Binary

Softmax = Multiclass

Can apply class weights

Can ignore class (incomplete training samples)

46

Presenter Notes
Presentation Notes
When performing binary classification, it is common to use a sigmoid function in the final layer to obtain class probabilities. For multiclass problems, softmax is used. Alternatively, if no function is applied raw logits are returned. For binary classification and when using a sigmoid activation, only the logit for the positive class will be predicted. When using softmax for a binary classification, logits for both the positive and negative classes will be predicted. For multiclass problems, logits for all classes will be predicted. When determining whether you need to convert logits to probabilities with a sigmoid or softmax function, the key consideration is what is expected by the loss metric implementation. Some loss metric implementations will expect raw logits while other will expect probabilities. We have and will continue to discuss this in detail in the PyTorch modules. It is also possible to change the weight of each class when training the model and defining the optimizer. You can even ignore a class so that it does not impact the weight updates, which can be useful when training data are incomplete or not wall-to-wall. We discussed class weighting methods in the Metrics and Losses module.

Class Imbalance

Use Dice loss (or Focal Dice, Tversky, Focal
Tversky)

Use Combined loss

Use Weighted Cross-Entropy

Augment class proportions in training set

47

Presenter Notes
Presentation Notes
When classes are imbalanced, you can implement a loss function that is more robust to this issue, such as Dice loss, Tversky loss, or weighted BCE/CE loss. You can also use a combination of losses, such as Dice + CE or Tversky + CE.You can also generate augmentations of the training data to increase the number of samples or the number of samples for specific classes. For example, you may choose to oversample the minority class and/or use a subsample of the more dominant class. We discussed such techniques for improving models and combating class imbalance in prior modules.

Create a background class

Background class has no weight in
learning process or loss calculation

An example:
https://medium.com/geoai/high-
resolution-land-cover-mapping-using-
deep-learning-7126fee571dd

Can be implemented using ArcGIS Pro

Learning from Incomplete Data

48

Presenter Notes
Presentation Notes
Adequate training data are not always available to generate masks with a classification or reference at each cell or location. This is a common issue; for example, you may only have a set of training polygons as opposed to a wall-to-wall reference set. Such data can still be used as input to UNet and other semantic segmentation methods. However, this will require that all cells that do not have an associated classification available be coded to a background class. During the process of training the algorithm, you will then need to assign a weight of zero to this background class so that it does not impact the model and loss calculations. The link on this slide provides an example where this process was applied for land cover mapping. ArcGIS Pro/arcgis.learn can also generate and use incomplete training data for semantic classification.

https://medium.com/geoai/high-resolution-land-cover-mapping-using-deep-learning-7126fee571dd

Data Augmentations

https://github.com/albument
ations-team/albumentations

Increase number of
training samples

Reduce overfitting

Examples: flip, rotate, blur,
sharpen, brightness,
contrast, saturation, swap
bands, and gamma

Make sure to augment
image and mask
together!!!!

Albumentations package
49

Presenter Notes
Presentation Notes
Again, data augmentation is useful for reducing overfitting, especially when the size of the training set is small. I recommend experimenting with the Albumentations package, which offers a wide variety of data augmentations and is pretty easy to use. Torchvision also offers tools for data augmentation. Since pixel-level alignment between images and masks must be maintained, it is important to apply the same set of transforms to image and mask pairs if the position of pixels in the chip are altered. This is important when applying rotations and flips, for example. This issue is generally handled well by the Albumentations package.

https://github.com/albumentations-team/albumentations

Merging Chips

Recombine chips to single layer
with correct coordinate reference
information

Can use overlap

Can remove predictions at chip
margins

Use GPU for faster inference

50

Presenter Notes
Presentation Notes
For geospatial predictions, we commonly want to merge individual predictions made on image chips back to single, continuous maps covering the spatial extent of interest. When doing so, it is common to use overlapping chips and use only the predictions from the center of chips, which are generally more accurate than predictions near the margins. In the examples, I will demonstrate methods for merging chips and assigning spatial reference information to generate map output.

This is the end of this lecture module.

Please return to the West Virginia View
Webpage for additional content.

Presenter Notes
Presentation Notes
Thanks! Hope you found this useful.

	Slide Number 1
	Example
	Example
	Example
	Example
	Example
	Instance vs. Semantic Segmentation
	Uses of CNNs
	Scene Classification
	Scene Classification
	Hoeser et al.
	Fully Convolutional Neural Networks
	Fully Convolutional ANNs
	Fully Convolutional ANNs
	Fully Convolutional ANNs
	1x1 2D Convolution
	Upsampling
	Transpose Convolution
	Encoder-Decoder Architecture
	UNet
	UNet Components
	UNet
	UNet
	UNet Implementations
	UNet++
	UNet++
	Deep Supervision in UNet++
	UNet-ID
	Spatial Pyramids
	Convolution with Dilation
	DeepLabv3+
	Atrous Spatial Pyramid Pooling
	DeepLabv3+
	Backbones
	Backbones
	Example: UNet with VGG-16 Backbone
	Example: UNet with ResNet-18 Backbone
	Practical Considerations
	Segmentation Models
	Backbones and Weights
	Data Requirements
	Using ArcGIS Pro
	Using QGIS
	R
	Dataset Prep
	Binary vs. Multiclass
	Class Imbalance
	Learning from Incomplete Data
	Data Augmentations
	Merging Chips
	Slide Number 51

