
Image from NASA: 
https://commons.wikimedia.org/wiki/File:Earth_Western_H
emisphere_transparent_background.png#filelinks

Other Deep Learning Applications in 
the Geospatial Sciences

Geospatial Deep Learning

Presenter Notes
Presentation Notes
Expanding upon the last sections, we will now explore additional deep learning use cases in the geospatial sciences. This component of the class is still being developed and expanded. We plan to develop PyTorch examples relating to instance segmentation, generative adversarial networks (GANs), and variational autoencoders (VAEs).In this module, I will conceptualize the architecture of different object detection and instance segmentation methods along with GANs and VAEs. These topics will not be explored in detail. 

https://commons.wikimedia.org/wiki/File:Earth_Western_Hemisphere_transparent_background.png#filelinks


Object Detection and Instance Segmentation using Faster R-CNN and 
Mask R-CNN (ArcGIS Pro)

vfillDL Dataset

YouTube Video

Paper 

Example

https://github.com/maxwell-
geospatial/wvview_geodl_examples

http://www.wvview.org/research.html

Maxwell, A.E., Pourmohammadi, P. and Poyner, 
J.D., 2020. Mapping the topographic features of 
mining-related valley fills using mask R-CNN deep 
learning and digital elevation data. Remote 
Sensing, 12(3), p.547.

https://youtu.be/b1qddjuhIS0

2

Presenter Notes
Presentation Notes
We have provided one object detection/instance segmentation example that uses ArcGIS Pro and does not require coding. We have not provided any PyTorch examples for object detection or instance segmentation yet. However, we hope to add some in the future. 

https://github.com/maxwell-geospatial/wvview_geodl_examples
http://www.wvview.org/research.html
https://youtu.be/b1qddjuhIS0


Object Detection
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Region-Based Convolutional 
Neural Networks

Produces bounding boxes, class 
predictions, and class 
probabilities

Does not produce pixel-level 
masks

Faster R-CNN = does not require 
generation of feature maps for all 
region proposals (faster version 
of R-CNN)

R-CNN

Cat 0.88

Cat 0.93
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Presenter Notes
Presentation Notes
I will not provide a detailed discussion of object detection methods in this course. However, I do want to provide an introduction, as these techniques can be useful in the geospatial sciences. Also, the instance segmentation methods that we will discuss in this module have developed from object detection techniques. We will begin with a discussion of region-based convolutional neural networks (R-CNNs). The goal of these techniques is to detect instances of defined classes within an image or video frame and generate a bounding box and class probability or probabilities, as demonstrated on the slide. Original R-CNN methods were slow and very computationally intensive. Modifications of this base technique have been developed to support faster implementation including fast R-CNN and faster R-CNN. I will focus this discussion on faster R-CNN. Faster R-CNN was introduced in 2015. 



1. Convolutional Neural Network = learn feature maps

2. Region Proposal Network (RPN) = generate candidate regions within 
the image

3. ROI Align = improve alignment between ROI pooling layers and ROIs

4. Fully Connected Layers = for bounding box regression and class 
prediction

Faster R-CNN Components
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Presenter Notes
Presentation Notes
Faster R-CNN has several components. First, traditional CNN layers are used to create feature maps for detecting categories of interest. If your training dataset is small, this can be based on pre-trained weights learned from other datasets, such as ImageNet or COCO.A large number of anchors or bounding boxes are defined across the images. These are bounding boxes centered over each pixel in the image with different sizes and aspect ratios. Next, the feature maps are applied to the bounding boxes and a subset of region proposals are selected that are suggested to likely contain the class of interest. Region of Interest (RoI) pooling is then used to convert all the proposed regions to a common size and aspect ratio. The filters are then applied to these ROIs, and fully connected layers are used to predict the class probabilities and refine the bounding boxes using regression.A process known as non-maximum suppression is used to remove overlapping bounding boxes and maintain the best, single bounding box for an object. Faster R-CNN expands upon the original implementation of R-CNN by applying the feature maps learned on the entire image to the ROIs as opposed to performing separate convolution operations on each ROI, which is not computationally efficient. It expands upon the fast R-CNN method as it uses the region proposal network as opposed to selective search, which was much slower. In summary, this method allows for the creation of bounding boxes of multiple features in an image by allowing convolution to be applied to targeted regions of the image as opposed to the entire image. 



Faster R-CNN Components
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Presenter Notes
Presentation Notes
This graphic highlights the Faster R-CNN process.Again, convolution is applied to the entire image to learn feature maps. These feature maps are then used to select RoIs from a large set of region proposals. Fully connected, dense layers are then used to refine the bounding boxes, which is a regression problem, and make class predictions, which is a classification problem. 



For overlapping predictions, only maintain 
bounding box or feature mask with highest 
probability

Help deal with issues associated with 
processing data chip-by-chip

Non-Maximum Suppression
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Presenter Notes
Presentation Notes
Non-maximum suppression is used to remove multiple, overlapping predictions of the same feature in object detection and instance segmentation tasks.Only the feature with the highest predicted probability will be maintained. 



For object detection

Real-time detection

Faster than region proposal network methods (R-CNN/Faster-RCNN)

Uses CNNs for feature extraction

Single-Shot Detector (SSD) head (additional convolutional layers) for 
generation of bounding boxes and class predictions

Single-Shot Detector
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Presenter Notes
Presentation Notes
There are other techniques available for object detection. Single-shot detectors (SSDs) offer fast, often real-time detection. They rely on CNNs to generate feature maps followed by a single-shot detector head, which is used to generate the bounding boxes and class predictions. Faster R-CNN is an example of a two-shot detector since it involves (1) the generation of region proposals and (2) the refinement of the proposals using bounding box regression and classification. When using an SSD, the single-shot detector head is used to select the best bounding boxes using a single pass.SSDs tend to be faster than region-based methods. However, they also tend to be less accurate. 



Image divided into grid cells

SSD detects objects in each grid cell

Anchor boxes are used to refine the prediction

Can define different aspect ratios for anchor boxes

Zoom level allows anchor boxes to vary in size

CNNs allow for detecting features of different sizes

Uses non-maximum suppression

Components of Single-Shot Detector

9

Presenter Notes
Presentation Notes
This slide highlights the components of an SSD. 
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Single-Shot Detector

Input
Image CNN

SSD Head

Detections
Non-

Maximum
Suppression

Bounding 
Box/Class

Presenter Notes
Presentation Notes
This slide diagrams a basic SSD. Again, CNNs are used to generate feature maps and the SSD head is used to find optimal bounding boxes from the generated candidates. Similar to Faster R-CNN, non-maximum suppression can be used to obtain a single bounding box for each feature. 



“You Only Look Once”
Extremely fast
Realtime object detection
Split input into grid of cells
Finds best bounding boxes
Makes class predictions
Uses non-maximum 

suppression
Predicts X Coord, Y Coord,

Height, Width, BBox
Confidence/Class 
Probabilities

YOLO
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Input 7x7 Conv Max Pooling 
3x3 Conv  1x1 Conv  3x3 Conv 
1x1 Conv  3x3 Conv Max Pooling 
 1x1 Conv  3x3 Conv  1x1 Conv 
3x3 Conv  1x1 Conv  3x3 Conv 
1x1 Conv  3x3 Conv  1x1 Conv 
3x3 Conv Max Pooling  1x1 Conv 
 3x3 Conv  1x1 Conv  3x3 Conv 
3x3 Conv  3x3 Conv  3x3 Conv
3x3 Conv -> Fully Connected  Fully 
Connected  (X Coord, Y Coord, 
Height, Width, BBox Confidence Class 
Probabilities)

Example = YOLO v1

Presenter Notes
Presentation Notes
YOLO, or “You Only Look Once”, is also an extremely fast object detector. It works similar to SSDs. The main difference is how the bounding box grids are defined and that fully-connected, dense layers are used to select bounding boxes.Note that there are different versions of YOLO that function differently and have evolved over time.



Images

Bounding boxes for each object 
instance

Object Detection Data Requirements
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Presenter Notes
Presentation Notes
For object-detection, input training and validation data must consist of (1) images and (2) coordinates that specify bounding boxes for each instance of the feature(s) of interest. This is different from scene classification tasks, where the input is an image and an associated scene label, as opposed to a bounding box. 



Instance Segmentation
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Based on UNet

Expands UNet for instance 
segmentation

Three UNets: border, 
segment, and inner

UNet-ID

https://www.mdpi.com/2072-4292/12/10/1544

https://zenodo.org/record/3926831#.XzhMbOhKiUk

Conceptualization from original paper (Wagner et al. 2020) 14

Presenter Notes
Presentation Notes
We will now discuss instance segmentation where each unique occurrence of each class in the scene is uniquely identified. We will specifically investigate Mask R-CNN.Before we discuss this method, I want to note that recent research has applied UNet, which was covered in the semantic segmentation module, to instance segmentation problems. For example, U-Net-Id uses multiple UNet architectures to detect individual instances of features by learning to identify features, feature boundaries, and feature interiors separately. We will not discuss this method in detail here, but I have provided a links to the paper and associated code on this slide. The code is implemented in R using Keras. We plan to add a new PyTorch module that explores this method in future iterations of the course.  

https://www.mdpi.com/2072-4292/12/10/1544
https://zenodo.org/record/3926831#.XzhMbOhKiUk
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UNet-ID

Border

Segment

Inner

Wagner, F.H., Dalagnol, R., Tarabalka, Y., Segantine, T.Y., Thomé, R. and Hirye, M.C., 2020. U-net-id, an instance segmentation 
model for building extraction from satellite images—case study in the joanópolis city, brazil. Remote Sensing, 12(10), p.1544.
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Presenter Notes
Presentation Notes
This slide highlights the architecture of Unet-ID. Three separate UNets are trained to segment feature borders, entire features, and feature interiors. The resulting feature maps from each of the three models are then combined and passed through additional 2D convolution operations so that the information from each of the three processes can be used in each prediction. Once the three predictions are made, post-processing can be used to differentiate each unique instance. 



Mask R-CNN

https://openaccess.thecvf.com/conten
t_ICCV_2017/papers/He_Mask_R-
CNN_ICCV_2017_paper.pdf
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He, K., Gkioxari, G., Dollár, P. and 
Girshick, R., 2017. Mask r-cnn. 
In Proceedings of the IEEE 
international conference on computer 
vision (pp. 2961-2969).
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Presenter Notes
Presentation Notes
The Mask Region-Based Convolutional Neural Network (Mask R-CNN) architecture is an extension of Faster R-CNN. As the diagram shows, the processes of generating the class predictions and bounding boxes are the same as those used in Faster R-CNN. However, another branch is added to generate a pixel-level segmentation within bounding boxes or RoIs. The mask prediction component is essentially a semantic segmentation architecture, except that it is applied to the RoIs separately. So, Mask R-CNN effectively adds a semantic segmentation branch to Faster R-CNN.

https://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf


1. Convolutional Neural Network = learn feature maps

2. Region Proposal Network (RPN) = generate candidate regions within 
the image

3. ROI Align = improve alignment between RoI pooling layers and RoIs

4. Fully Connected Layers = for bounding box regression and class 
prediction

5. Fully Convolutional Neural Network = for pixel-level semantic 
segmentation within the RoIs

Mask R-CNN Components
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Presenter Notes
Presentation Notes
The components of Mask R-CNN are the same as those for Faster R-CNN with the addition of the fully convolutional branch that performs the pixel-level mask predictions within the RoIs. 



Class prediction

Class probabilities

Instance bounding box

Instance segmentation 
(pixel-level)

Mask R-CNN Output
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Cat 0.88

Cat 0.93

Presenter Notes
Presentation Notes
Similar to Faster R-CNN, Mask R-CNN will generate bounding boxes and class predictions and associated probabilities. The pixel-level segmentation is an added output not generated by Faster R-CNN. Note that it is a simple task to convert instance segmentation pixel-level masks to a semantic segmentation. 



Image chips of defined shape: 
(3, 512, 512), (3, 256, 256), (3, 
128, 128), etc. 

Label/classified image chips:
Different folder for each 

class
Unique ID for each instance 

of each class per image chip

Common formats: JPEG, PNG, 
TIFF

Instance Segmentation Data Requirements
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Presenter Notes
Presentation Notes
The input requirements for Mask R-CNN are similar to those for semantic segmentation. Generally, you do not need to provide bounding boxes, as these can be derived from the masks. One key difference is that each instance will need to be given a unique ID. In the provided example, the two topographic features belong to the same class but are assigned different unique numeric codes. If multiclass classification is to be performed, then different masks for each class are commonly stored in different folders. Within each folder all masks will have unique IDs assigned to each instance of the class in the chip. Similar to semantic segmentation methods, larger chips will require more computational power and time to process. ArcGIS Pro/ArcPy and the ArcGIS API for Python have tools available for generating training data appropriate for instance segmentation and Mask R-CNN specifically. 



PyTorch
https://www.learnopencv.com/

mask-r-cnn-instance-
segmentation-with-pytorch/

Keras/Tensorflow
https://github.com/matterport/

Mask_RCNN

ArcGIS Pro
https://developers.arcgis.com/p

ython/api-
reference/arcgis.learn.toc.html

Mask R-CNN Implementations

https://github.com/matterport/Mask_RCNN
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Presenter Notes
Presentation Notes
Currently, there is no implementation of Mask R-CNN available for R. However, there are implementations available for Keras/Tensorflow and PyTorch. The GitHub link provided by Matterport is a common starting point. Mask R-CNN is available in ArcGIS Pro and in the arcgis.learn module of the ArcGIS API for Python. 

https://www.learnopencv.com/mask-r-cnn-instance-segmentation-with-pytorch/
https://github.com/matterport/Mask_RCNN
https://developers.arcgis.com/python/api-reference/arcgis.learn.toc.html
https://github.com/matterport/Mask_RCNN


Generative Models
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Generative Adversarial Networks (GANs)
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https://developers.google.com/machine-learning/gan/gan_structure

Presenter Notes
Presentation Notes
The goal of generative AI is to generate realistic or believable fake or synthetic data. This could include text, images, or videos. This technology has allowed for the development of “deep fakes”, which raises serious ethical concerns. However, in the geospatial sciences synthetic data generation methods have several positive applications. One example is developing synthetic training data to train supervised deep learning algorithms, such as those designed for semantic or instance segmentation. Another use is filling data gaps, such as replacing clouds in imagery with predicted pixel values. Generative adversarial networks (GANs) offer one means of performing generative AI. These architectures have two components: the generator and the discriminator. The goal of the generator is to convert a random input to a realistic or fake sample while the goal of the discriminator is to differentiate between real data and those generated by the discriminator. During the training process the parameters associated with the generator are updated in an attempt to trick the discriminator while the parameters associated with the discriminator are updated to try and detect fake data generated by the generator. This training process progresses in an attempt to update the trainable parameters associated with the generator such that it can successfully trick the discriminator. The example associated with the link provided on this slide was created by Google and does a good job of explaining GANs. 

https://developers.google.com/machine-learning/gan/gan_structure


Attempt to distinguish real
data from data created by the 
generator

Discriminator loss penalizes 
the discriminator for calling a 
real sample fake or a fake
sample real

A variety of classification 
architectures can used
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Role of the Discriminator

Discriminator

Sample

Real or Fake?

Presenter Notes
Presentation Notes
The goal of the discriminator is to learn to tell the difference between fake data created by the generator and real examples. During the training processes, it is necessary to train the discriminator since its predictions must improve and force the generator to continue to improve to “outsmart” it. The loss function associated with training the discriminator penalizes it for incorrectly labeling a real sample as fake or a fake sample as real.Since the goal of this component of the GAN is to return a binary prediction for each sample (i.e., label it as real or fake), then the associated architecture can be any scene labeling architecture, such as a convolutional neural network or a fully connected neural network. CNNs are commonly used. 



Generate fake data

Fake data generated from 
random noise

Goal is to generate fake data 
to trick the discriminator
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Role of the Generator

https://pytorch.org/tutorials/begi
nner/dcgan_faces_tutorial.html

Presenter Notes
Presentation Notes
The goal of the generator is to produce believable fake data that can trick the discriminator. The example images on this slide represent fake images generated by a generator that are supposed to represent celebrities. A GAN architecture was trained using real celebrity faces and those generated with a generator with the goal of tricking the discriminator. This was taken from the link provided on this page, which steps through a PyTorch GAN implementation. This example is worth exploring if you are interested in generative AI. The generator is provided with random noise and attempts to modify this random input to represent a sample that can trick the discriminator. The goal is to generate data that match the distribution of the real images provided in the training set. The generator component of the model is an architecture that can take input data and transform it to a new distribution. This could be accomplished using a modified semantic segmentation or decoder architecture that accepts random data and transform them to an output. 

https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html


Alternating process of:

1. Training discriminator for one or multiple epochs

2. Training the generator for one or multiple epochs

Monitor two losses
min-max loss
Generator attempts to minimize 
Discriminator attempts to maximize
Alternatives
non-saturating GAN loss, Wasserstein GAN loss

Assessing or detecting convergence can be difficult/challenging
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Training a GAN

Presenter Notes
Presentation Notes
Training a GAN is a bit different from training a classification deep learning architecture. Generally, learning will progress by alternating between training the discriminator and then the generator. When training the discriminator, real samples will be fed in along with samples generated by the generator. However, only parameters associated with the discriminator will be updated. The goal is to update the weights to improve the correct prediction of real and fake samples. When updating the generator, only parameters associated with the generator will be updated; however, the predictions made by the discriminator will be used to guide these updates. Different loss metrics are available for training GANs, and two losses will need to be monitored: a loss associated with the generator and a loss associated with the discriminator. One option is the min-max loss. The specifics of this loss metric are outside the scope of this class. When training the generator, the goal is to minimize this loss. When training the descriminator, the goal is to maximize this loss (or, minimize 1 – this loss). Optimal performance occurs when the generator is able to fool the discriminator. Note that there are alternative loss metrics for GANs, some of which are noted on this slide. It can be challenging to train GANs or know when they are converging. This is still an active area of research. Also, there are other uses of GANs other than just creating new samples that are similar to the provided training samples. One example is style GANs. The goal of these architectures is to apply styles learned from one dataset to samples from another dataset. For example, satellite image could be altered to take on the style of a van Gogh painting. We will not discuss other GAN applications in this course. 



Variational Autoencoders
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Presenter Notes
Presentation Notes
The goal of an autoencoder is to be able to accept input data, transform it to a lower dimensional space, then rebuild or restore the data with limited errors. The lower dimensional space is generally termed the latent space. The encoder component converts the input data to the lower dimensional space while the decoder attempts to restore the data. One common and very practical use of autoencoders is to compress files. The latent space would take up less space or memory on a system. It would also be easier to transfer these data over a network. An autoencoder could be used to convert an image or audio file to a latent space for storage and/or transfer then subsequently restore the data with limited loss of data. 
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Variational Autoencoder (VAEs)
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Presenter Notes
Presentation Notes
One augmentation of autoencoders that have been shown to be especially useful are variational autoencoders, or VAEs. The goal of a VAE is to detect anomalies, or new samples that are different from the samples that were used to train the autoencoder. For example, a VAE could be trained to reconstruct satellite images of land. If the trained network is then provided an image of water, it should not be able to reconstruct it accurately, which could indicate that it is different from the training samples or is an anomaly. Another interesting use case are wildlife cameras. The network could be trained using only pictures collected without any wildlife in them. The trained model could then be used to reconstruct images, and a large reconstruction error could indicate that the image contains wildlife. The encoder component of the VAE, similar to a traditional autoencoder, converts the input data to a lower dimensional space (i.e., the latent space). This latent space should capture the central tendency, variability, and associated distribution of the population without any anomalies. The decoder then learns to reconstruct data from this population. When the architecture is provided with an image that is outside of the population distribution, or different from the samples on which it was trained, the reconstruction error would likely be high. 



Population distribution learned from training samples

Does new sample fit learned distribution?

High reconstruction error = more likely to be an anomaly
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Is sample an anomaly?

Presenter Notes
Presentation Notes
The goal of a VAE is to learn the population distribution and represent it in the latent space. When a new sample is provided to the trained VAE the model will attempt to encode and subsequently decode the sample. If the sample is outside of the population distribution, the network should do a poor job reconstructing it, resulting in a high reconstruction error. The user must determine what level of reconstruction error should be flagged as indicating an anomaly.  



This is the end of this lecture module. 

Please return to the West Virginia View 
Webpage for additional content. 

Presenter Notes
Presentation Notes
Thanks! Hope you found this useful. 
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