
Image from NASA:
https://commons.wikimedia.org/wiki/File:Earth_Western_
Hemisphere_transparent_background.png#filelinks

ArcGIS Maps SDK for JavaScript

Client-Side Web GIS

In this module, you will begin to apply your
knowledge of web development and JavaScript to
produce interactive web maps and scenes using the
ArcGIS Maps Software Development Kit (SDK) for
JavaScript, formally called the ArcGIS API for
JavaScript. In the next module, we will investigate a
free and open-source alternative called Leaflet.

1

Background

2

2

ArcGIS Maps SDK for
JavaScript = offers fully
customizable web maps and
apps (requires coding)

Presenting Your Data

API = Application Programming Interface 3

https://developers.arcgis.com/javascript/latest/

ESRI offers many tools for the production of web-
based GIS data, maps, and apps. We have already
discussed ArcGIS Online and related technologies.

You may be able to generate your desired products
using these methods. However, if you require more
customization and functionality, you may need to
implement the ArcGIS Maps SDK for JavaScript.
This API is currently in build 4.x, and there have
been some substantial changes between 3.x and 4.x.

3

API = Application Programming Interface

URLs that provide code and functions that
can be used to complete a task on the web

We will explore the ArcGIS API for
JavaScript in this course to make web
maps

What is an API?

4

An Application Programming Interface, or API, is a
URL or web link that provides code, functions, and
procedures to support specific tasks.

For example, the ArcGIS Maps SDK for JavaScript
and the Leaflet JavaScript API provide code and
functions to generate interactive web maps.

APIs have many uses. I think of them as libraries of
code and tools that can be accessed to process data
or generate content.

In this course, we will primarily interact with APIs
for web mapping and interactive web map

4

production.

4

A JavaScript toolkit/framework

Saves time as you develop web
apps

Alternative to jQuery

ArcGIS API for JavaScript makes
use of Dojo

What is Dojo?

https://dojotoolkit.org/

5

The ArcGIS Maps SDK for JavaScript uses the Dojo
toolkit as opposed to the jQuery library.

We will not discuss this toolkit in detail in this
course.

5

Documentation

6

https://developers.arcgis.com/javascript/latest/

This slide provides a link to the ArcGIS Maps SDK
for JavaScript documentation. If you plan to use
this API extensively, you will become familiar with
this documentation.

6

Samples are provided
on the API website:
https://developers.arcg
is.com/javascript/lates
t/sample-
code/index.html

Can start creating
content by editing and
combining the
provided examples

Sample Code

7

ESRI also provides example code to complete
common tasks. You can experiment with this code
in the available sandbox. You can copy this code
into your scripts for use and further manipulation.

I have generally found the best way to start building
a web app using this API is to find a sample that is
similar to your goals and start with that code. You
can also merge examples or sections from multiple
sets of code.

7

Always use a plain
text editor

Don’t type code in
Word!

Example: Notepad,
Notepad++, Sublime
Text, Atom, Brackets

I like VS Code =

Using Text Editors

https://code.visualstudio.com/

8

Similar to working with HTML and CSS, we will
build our web maps using a plain text editor.

We will write our JavaScript within <script> tags
within an HTML document in this section.
However, the code could be written in a separate JS
file that is linked to the HTML file.

8

Referencing the API

9

<link rel="stylesheet" href="https://js.arcgis.com/4.27/esri/themes/light/main.css"/>
<script src="https://js.arcgis.com/4.27/"></script>

Similar to jQuery and Bootstrap, you will need to
reference the API in your code in order to use it.

This can be accomplished using a link to the content
delivery network (CDN) for both the JavaScript and
associated CSS.

It is best to use the minimized version of the code
for faster loading and transfer speeds.

9

Calling modules provides
access to specific functions
made available by the API

You must call modules that
contains functions you need

The modules called in the
example are: Map, MapView,
and FeatureLayer

Modules will be called inside
of a <script> tag and in a
require function

Connecting to Modules

10

require([
"esri/Map",
"esri/views/MapView",
"esri/layers/FeatureLayer",

], function (Map, MapView, FeatureLayer)
{JS CODE GOES HERE}

Specific functions in the ArcGIS Maps SDK for
JavaScript are provided in separate modules. If you
are not using any functions or methods from a
module, then there is no need to load it in.

So, it is common to initiate your script by calling in
the required modules as an array. In the example, I
am calling in the Map, MapView, and FeatureLayer
modules. The Map module is used to generate a web
map, the MapView module is used to generate a
map view to house the map on the page, and the
FeatureLayer module allows you to read in and
work with feature layers and hosted feature layers.

10

Note that you will do this within a <script> tag or
separate JS file using the require() function.

You must call in all modules that you plan to
reference or use in your web map.

This code looks a bit different from vanilla
JavaScript. This is due to the use of the Dojo
framework and the Asynchronous Module
Definition (AMD) format.

10

After calling in the modules,
you will then call functions
needed

In the example, the Map,
MapView, and FeatureLayer
functions are being called

Functions must be listed in
the same order as the
modules or the code will fail

Functions and Methods

11

require([
"esri/Map",
"esri/views/MapView",
"esri/layers/FeatureLayer",

], function (Map, MapView, FeatureLayer)
{JS CODE GOES HERE}

Once the required modules are defined, you will
need to call the required functions as arguments
within an anonymous function.

The functions must be called in the same order as
the modules to which they apply or the code will fail.
In this example, note that I used the same order in
the array that defined the required modules and in
the arguments for the anonymous function.

Once these tasks have been accomplished, you can
start building your web map within the anonymous
function.

11

Maps, Map Views, and Scene Views

12

12

Map = 2D projected map (generally uses Web Mercator)

Scene = 3D scene of a 3D globe

Maps vs. Scenes

Image from ArcGIS API for
JavaScript

Image from ArcGIS API for
JavaScript 13

The ArcGIS Maps SDK for JavaScript supports the
production of both 2D maps and 3D scenes. We will
start with a discussion of 2D maps.

13

Class that contains properties and
methods for storing, managing,
and overlaying layers

A map is rendered using a
MapView or SceneView

Name the Map

Define a base map

Define elevation surface

Define operational layers

Maps

https://developers.arcgis.com/javascript/latest/api-reference/esri-Map.html 14

const map = new Map({
basemap: "hybrid",

});

The Map class provides properties and methods for
storing, managing, and overlaying layers common to
both 2D and 3D viewing. Once the map object is
defined, it can be added to a map view or scene view
to be placed on the page.

When creating a new map object, you will need to
provide a variable name. You can set a base map,
define what elevation surface to use, and add
operational layers.

In this example, I am defining a desired base map.

14

Available
base maps

Basemaps

https://developers.arcgi
s.com/javascript/latest/
api-reference/esri-
Map.html

Value Source

topo https://services.arcgisonline.com/ArcGIS/rest/services/World_Topo_Map/MapServer

streets https://services.arcgisonline.com/ArcGIS/rest/services/World_Street_Map/MapServer

satellite https://services.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer

hybrid https://services.arcgisonline.com/ArcGIS/rest/services/Reference/World_Boundaries_and_Places/MapServer
https://services.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer

dark-gray https://services.arcgisonline.com/ArcGIS/rest/services/Canvas/World_Dark_Gray_Reference/MapServer
https://services.arcgisonline.com/ArcGIS/rest/services/Canvas/World_Dark_Gray_Base/MapServer

gray https://services.arcgisonline.com/ArcGIS/rest/services/Canvas/World_Light_Gray_Reference/MapServer
https://services.arcgisonline.com/ArcGIS/rest/services/Canvas/World_Light_Gray_Base/MapServer

national-geographic https://services.arcgisonline.com/ArcGIS/rest/services/NatGeo_World_Map/MapServer

oceans https://services.arcgisonline.com/arcgis/rest/services/Ocean/World_Ocean_Reference/MapServer
https://services.arcgisonline.com/arcgis/rest/services/Ocean/World_Ocean_Base/MapServer

osm OpenStreetMapLayer

terrain https://services.arcgisonline.com/ArcGIS/rest/services/Reference/World_Reference_Overlay/MapServer
https://services.arcgisonline.com/ArcGIS/rest/services/World_Terrain_Base/MapServer

dark-gray-vector Dark Gray Canvas [v2]

gray-vector Light Gray Canvas [v2]

streets-vector World Street Map [v2]

streets-night-vector World Street Map (Night) [v2]

streets-navigation-vector World Navigation Map [v2]

topo-vector https://services.arcgisonline.com/arcgis/rest/services/Elevation/World_Hillshade/MapServer
World Topographic Map [v2]

streets-relief-vector https://services.arcgisonline.com/arcgis/rest/services/Elevation/World_Hillshade/MapServer
World Street Map (with Relief) [v2]

15

This slide provides a list of base maps that are made
available by ESRI. Note that you can also use your
own base maps or connect to third-party content.

ESRI currently provides both tile layer and vector
tile layer versions of many of their base maps.

Some base maps require and API key while others
do not.

15

Display 2D view of a map instance

Define map to be rendered

Define container (generally a div on
the page)

Can define map center

Can define map zoom

Can define extent as xmin, ymin,
xmax, ymax

Can define spatial reference

MapView

const view = new MapView({
container: "viewDiv",
map: map,

extent: { // autocasts as new Extent()

xmin: -9177811,
ymin: 4247000,
xmax: -9176791,
ymax: 4247784,
spatialReference: 102100

}
});

https://developers.arcgis.com/javascript/latest/api-reference/esri-views-MapView.html 16

Once a map object is generated, it will need to be
placed in a map view or scene view to render it on
the webpage.

When defining a map view, you will need to provide
the container that will house it on the webpage. This
is generally a <div> on the page. The <div> can be
specified using the assigned ID selector.

You will also need to define the map to be rendered.

The extent argument accepts a JavaScript object
and a set of properties. In the example, I have
defined an extent using xmin, xmax, ymin, and

16

ymax values relative to a spatial reference defined
with a code.

If no spatial reference is defined, then the WGS84
Web Mercator projection is assumed.

16

Display 2D view of a map instance

Define map to be rendered

Define container (generally a div
on the page)

Can define map center

Can define map zoom

Can define extent as xmin, ymin,
xmax, ymax

Can define spatial reference

MapView

https://developers.arcgis.com/javascript/latest/api-reference/esri-views-MapView.html 17

const map = new Map({
basemap: "hybrid",

});

const view = new MapView({
container: "viewDiv",
map: map,
center: [-80.5, 38.5],
zoom: 8,

});

This slide shows a different means of defining an
initial extent using a center longitude and latitude
coordinate, provided as an array, and a zoom level.

I generally use this method as opposed to the
method described on the prior screen.

17

Most reference a container
(div)

Include CSS to set up the div

Reference div in HTML
<body>

Place Map View on Page

https://developers.arcgis.com/javascript/latest/api-reference/esri-views-MapView.html 18

<style>
html,
body,
#viewDiv {

padding: 0;
margin: 0;
height: 100%;
width: 100%;

}
</style>

<body>
<div id="viewDiv"></div>

</body>

Outside of the <script> tag or JS file, you will need
to define a <div> in which to store the map view and
assign it to an ID selector. You can also apply styling
to this <div> using CSS.

18

MapView

https://developers.arcgis.com/javascript/latest/api-reference/esri-views-MapView.html 19

const map = new Map({
basemap: "hybrid",

});

const view = new MapView({
container: "viewDiv",
map: map,
center: [-80.5, 38.5],
zoom: 8,

});

Here, the resulting page is shown.

A map object has been placed in the <div> assigned
to the “viewDiv” ID selector. Since this is the only
<div> on the page, it takes up the entire viewport.

The map is initially centered on 81.5-degrees west
longitude and 38.5-degees north latitude with a
zoom level of 8. A hybrid base map is used that
includes imagery and some ancillary boundaries
and labels.

19

20

Video: Maps and Map Views

20

Allows map to be viewed on a 3D
globe as opposed to a 2D projected
map space

Must define container

Must define map to be rendered

Define center

Define scale or zoom

Define source of elevation data with
map

SceneView

https://developers.arcgis.com/javascript/latest/api-reference/esri-views-SceneView.html 21

<script>
require(["esri/Map",

"esri/views/SceneView"], function (Map,
SceneView) {

const map = new Map({
basemap: "terrain",
ground: "world-elevation",

});

const view = new SceneView({
container: "viewDiv",
map: map,
center: [-80.5, 38.5],
scale: 100000,

});
});

</script>

As an alterative to viewing the map as a 2D
projected map that uses the Web Mercator
projection, you can also create 3D scenes using the
SceneView class.

Similar to a map view, you will need to link the map
to the view and specify a starting position. In this
example, I am setting a center and scale. Note that
scenes do not use the map tile-based zoom levels.
Instead, the scale is based on the scale
representation of the earth (In this case, 1:100,000
scale).

Since I would like to represent the terrain surface in

21

3D, I also define a ground elevation surface to
reference. These data are also provided by ESRI.

21

Define position of camera using:
Position
Latitude coordinate
Longitude coordinate
Elevation
Heading (0-360)
Tilt (0-90)

Defining Camera Position

https://developers.arcgis.com/javascript/latest/api-reference/esri-views-SceneView.html 22

const map = new Map({
basemap: "satellite",
ground: "world-elevation",

});

const view = new SceneView({
container: "viewDiv",
map: map,
camera: {
position: [

-100, // lon
47.8, // lat
2000, // elevation in meters

],

heading: 0,
tilt: 90,

},
});

This slide shows another way to define a starting
position for a scene.

Here, the position argument accepts an array that
provides the longitude, latitude, and elevation above
the ground of the view location. You can also set a
heading and tilt. In the example the “camera” will be
pointed north and tilted 90-degrees.

So, you are effectively defining the position and
orientation of a camera in 3D space.

22

Defining Camera Position

https://developers.arcgis.com/javascript/latest/api-
reference/esri-views-SceneView.html

23

const view = new SceneView({
container: "viewDiv",
map: map,
camera: {
position: [

-13.04,
47.8,
1000,

],

heading: 180,
tilt: 90,

},
});

This slide shows the result of the camera position
settings. The camera would occur at 13.04-degrees
east longitude, 47.8-degrees north latitude, and
1,000 meters in elevation. It is looking to the south
and horizontally at 90-degrees. 0-degrees indicates
looking straight down while 180-degrees is looking
straight up.

23

Custom Base map

https://developers.arcgis.com/javascript/latest/sample-
code/basemap-custom/index.html

24

Note that it is possible to define and use custom
base maps. If you are interested in this, have a looks
at this example.

24

25

Video: Maps and Scene Views

25

Adding Layers

26

26

Must call FeatureLayer
module

Must call FeatureLayer
method

Use map.add() to add to map

Add Feature Layer

https://developers.arcgis.com/javascript/latest/api-reference/esri-layers-FeatureLayer.html 27

const countyTemp = new FeatureLayer({
url: "URL",

});
map.add(countyTemp);

We now have a web map that has been rendered
into a view as a 2D map or 3D scene. However, we
have not added any operational data layers.

The method used to add a layer depends on the type
of layer of interest. We will start with a discussion of
methods for adding feature layers or hosted feature
layers.

To interact with and use feature layers, you will
need to load the FeatureLayer module and provide
the FeatureLayer method as an argument to the
anonymous function.

27

To connect to a feature layer, you will then define it
as a variable and connect to it using the appropriate
URL. You can connect to feature layers made
available by data services or feature layers stored in
your ArcGIS Online content.

To add the feature layer to the map, you will need to
use the add() method of the map class.

27

Can also add feature
layer when defining the
map using layers
parameter

Add Feature Layer

https://developers.arcgis.com/javascript/latest/
api-reference/esri-layers-FeatureLayer.html

28

require([
"esri/Map",
"esri/views/MapView",
"esri/layers/FeatureLayer",

], function (Map, MapView, FeatureLayer) {
const countyTemp = new FeatureLayer({

url: "URL",
});

//Define Feature Layer as Variable
const stateBounds = new FeatureLayer({

url: "URL",
});

//Add Feature Layers to Map
const map = new Map({

basemap: "hybrid",
layers: [countyTemp, stateBounds],

});
const view = new MapView({

container: "viewDiv",
map: map,
center: [-105, 45],
zoom: 5,

});
});

This slide shows an alternative method for adding a
feature layer. Here, the feature layer is defined
before creating the map. I then use the layers
argument, which accepts an array of layer variables,
to add the feature to the map. Note that you can list
multiple features in this array.

28

Add Layer from Portal Item

https://developers.arcgis.com/javascript/latest/sample-code/layers-
portal/index.html

29

require([
"esri/Map",
"esri/views/MapView",
"esri/layers/Layer",

], function (Map, MapView, Layer) {
const map = new Map({

basemap: "hybrid",
});

const view = new MapView({
container: "viewDiv",
map: map,
center: [-106.5, 41],
zoom: 5,

});

Layer.fromPortalItem({
portalItem: {

id: "ac427198c9bb463cadd2ac57456e0f8e",
},

}).then(function (layer) {
map.add(layer);

});
});

Yet another method for connecting to a data layer
that is stored in your ArcGIS Online content is to
use the portal ID associated with the layer. This is
done using the “fromPortalItem” method available
for layers.

I have found this to be particularly useful if I want
to call in multiple layers that are associated with the
same hosted feature layer. Note that the default
symbology defined in ArcGIS Online should be
applied. However, this can be overwritten.

29

Add Tile Layer

30

require([
"esri/Map",
"esri/views/MapView",
"esri/layers/FeatureLayer",
"esri/layers/TileLayer",
"esri/layers/MapImageLayer",
"esri/layers/VectorTileLayer",

], function (
Map,
MapView,
FeatureLayer,
TileLayer,
MapImageLayer,
VectorTileLayer

) {
const naip = new TileLayer({

url: "URL",
format: "jpgpng",

});
const map = new Map({

basemap: "osm",
layers: [naip],

});
const view = new MapView({

container: "viewDiv",
map: map,
center: [-80.5, 38.5],
zoom: 8,

});
});

Raster-based tile layers can be added using the
TileLayer method from the TileLayer module.

You will need to provide a URL to reference the
layer and can also provide a format argument to
specify what raster-based formats can be received
from the server. JPEG and PNG are most common
since they are compressed.

A tile layer can be added to a map using the same
methods as those used for feature layers.

You can connect to tile layers from your ArcGIS
Online content or by connecting to other services. In

30

this example, I am connecting to a service provided
by the WV GIS Technical Center.

30

Add Vector Tile Layer

https://developers.arcgis.com/javascript/latest/sample-
code/sandbox/index.html?sample=layers-vectortilelayer 31

This link provides an example of how to connect to a
vector tile layer as opposed to a raster tile layer.

31

32

Video: Adding Layers

32

Pop-Ups and Renderers

33

33

Configure Pop-Ups

https://developers.arcgis.com/javascript/latest/api-reference/esri-PopupTemplate.html 34

const template = {
// autocasts as new PopupTemplate()
title: "Data for {CNTRY_NAME}",
content: [

{
type: "fields",
fieldInfos: [

{
fieldName: "FID",
label: "FID",
visible: false,

},
{

fieldName: "CNTRY_NAME",
label: "Country Name",
visible: false,

},
{

fieldName: "STATUS",
label: "UN Status",
visible: true,

},
],

},
],

};

const featureLayer = new FeatureLayer({
url: “URL",
outFields: ["*"],
popupTemplate: template,

});
map.add(featureLayer);

If a pop-up is configured using ArcGIS Pro then
published to ArcGIS Online or configured within
ArcGIS Online, then that configuration should be
honored when calling in the data using the API.
Note that pop-ups can be defined for feature layers
but are not generally available for tile layers (since
tile layers just represent pictures of the data).

If you would like to change or define the pop-up
within the code, that can be accomplished by
creating a pop-up template then applying this
template to the layer.

The slide shows an example of a template in which a

34

title is defined and fields are specified. I am setting
alias names and indicating whether specific
attributes should be visible. For numeric data, I use
the format argument to note whether comma
separators should be included and how many
decimal places to show.

Once the template is configured, it can be applied to
the feature layer as an argument in the
FeatureLayer() method. You can list what fields to
include and the template to use. An asterisks
indicates that all fields should be included.

To build a pop-up template, I generally start with an
example then edit it to obtain the desired result.
This may require adding or removing objects from
the list.

34

Video: Configure a Pop-Up

35

35

Use Renderers (Unique Types)

https://developers.arcgis.com/javascript/latest/api-
reference/esri-renderers-Renderer.html 36

const rep = {
type: "simple-fill",
color: "#ff0000",
style: "solid",
outline: {
width: 2,
color: [0, 0, 0, 0.5],

},
};

const voteRend = {
type: "unique-value",
legendOptions: {

title: "2018 Presidential Election",
},
defaultSymbol: rep,
defaultLabel: "Other",
field: "winner08",
uniqueValueInfos: [

{
value: "democrat",
symbol: dem,
label: "Democrat",

},
{

value: "republican",
symbol: rep,
label: "Republican",

},
],

};

const featureLayer = new FeatureLayer({
url: "URL",
renderer: voteRend,

});
map.add(featureLayer);

If symbology is defined in ArcGIS Pro prior to
publishing to ArcGIS Online or symbology is
defined using ArcGIS Online, the API should honor
it when a feature layer or hosted feature layer is
called. Note that it is not possible to change
symbology for raster-based tile layers since the
pictures of the data have already been rendered.
Vector-tile layers do allow for symbology to be
changed, but the method is different than that
described here.

If you want to define symbology using the API, this
can be accomplished by defining your own renderer.
On this slide, I am providing an example for

36

rendering unique types or a nominal attribute.

First, you will have to define the symbology desired
for each category as a JavaScript object. On the slide
I have provided an example for styling the counties
that voted republican. The type argument allows
you to specify the type of symbology to be defined
(in this case, simple-fill). The color specifies the fill
or interior color and the style specifies the style (in
this case, a solid fill). The outline argument accepts
an object. Here I have set a width and a color using
RGBA provided as an array.

Once these symbols are defined, they are then used
within a renderer to define the symbology for each
category. This requires that the field being used to
symbolize the data be specified and unique
symbology for each value is defined. The arguments
are provided using arrays, lists, and strings.

Once the symbology is defined, it can be applied to a
feature layer using the renderer argument.

36

Use Renderers (Continuous with Class Breaks)

https://developers.arcgis.com/javascript/
latest/api-reference/esri-renderers-
Renderer.html

37

const l40g = {
type: "simple-fill",
color: "#b30000",
style: "solid",
outline: {
width: 0.2,
color: [0, 0, 0, 0.5],

},
};

const renderer = {
type: "class-breaks",
field: "med_income",
legendOptions: {
title: "Median Income",

},
defaultSymbol: {
type: "simple-fill",
color: "black",
style: "backward-diagonal",
outline: {

width: 0.5,
color: [50, 50, 50, 0.6],

},
},
defaultLabel: "no data",
classBreakInfos: [
{

minValue: 0,
maxValue: 39999,
symbol: l40g,
label: "< $40,000",

}

const featureLayer = new FeatureLayer({
url: “URL",
renderer: renderer,

});
map.add(featureLayer);

This is a second example for a continuous variable.
Here, I am using a “class-breaks” type as opposed to
a “unique-value” type. Each class break will then be
defined using the min and max values for each bin,
the symbol to use, and the legend label.

Once the symbols and renderer are defined, the
symbology is applied using the renderer option for
the feature layer.

37

Types of Renderers

Visualization Type Renderer

Location Only SimpleRenderer, HeatmapRenderer

Unique Values UniqueValueRenderer

Class Breaks ClassBreaksRenderer

Continuous Color/Size SimpleRenderer, UniqueValueRenderer, visualVariable

Multivariate
SimpleRenderer, UniqueValueRenderer, visualVariable

https://developers.arcgis.com/javascript/latest/api-reference/esri-renderers-Renderer.html

38

This slide describes the type of renderers that are
available via the API.

If you only want to show the location of a feature,
you can use a SimpleRenderer (same symbol for all
features) or a HeatmapRenderer (density of point
features). To differentiate unique values (categories
or nominal data), the UniqueValueRenderer is
generally used. For continuous data, classification
bins can be defined using the ClassBreaksRenderer,
or a continuous or multivariate symbology can be
applied using the visualVariable renderer.

38

Defining Styles

Geometry Type Symbol Types

Point SimpleMarkerSymbol, PictureMarkerSymbol, TextSymbol

Polyline SimpleLineSymbol, TextSymbol

Polygon
SimpleFillSymbol, PictureFillSymbol, SimpleMarkerSymbol,

TextSymbol

https://developers.arcgis.com/javascript/latest/api-reference/esri-symbols-Symbol.html

39

The type of symbology that can be use for each
feature, category, or classification bin will depend
on the geometry type of the data and whether the
data are symbolized in a 2D map view or 3D scene
view.

This slide provides some examples for symbology in
a 2D map view. Different symbol types have
different use cases and available arguments.

For example, the SimpleLineSymbol allows for a
line color, width, type, and style to be defined while
SimpleFillSymbol allows for the fill color, outline
color, outline width, and outline style to be defined.

39

If you need to style a specific type of feature, I
suggest consulting the API documentation and the
provided examples.

39

Video: Working With Renderers

40

40

Widgets

41

41

Add functionality to your map

Do not require coding

Common widgets:
Basemap Gallery
Bookmark
Draw
Edit
Layer List
Legend
Measure
Print
Query
Select

Widgets

42

We will now discuss adding widgets or tools to web
apps generated with the API.

42

Basemap Gallery

https://developers.arcgis.com/javascript/latest/api-
reference/esri-widgets-BasemapGallery.html

43

require([
"esri/Map",
"esri/views/MapView",
"esri/layers/FeatureLayer",
"esri/layers/TileLayer",
"esri/widgets/BasemapGallery",

], function (Map, MapView, FeatureLayer, TileLayer, BasemapGallery) {JS CODE GOES HERE}

const basemapGallery = new BasemapGallery({
view: view,

});
view.ui.add(basemapGallery, {
position: "top-right",

});

You may want users to be able to change the base
map displayed. This can be accomplished using the
Basemap Gallery widget. This widget is made
available in the BasemapGallery module.

Here, I am creating a variable to reference the
basemap gallery to be added to the map view. I then
use the add() method for the user interface (UI)
class to add this to the map. The position argument
allows you to define the position of the gallery
within the <div> or map area.

43

Bookmark Widget

https://developers.arcgis.com/javascript/latest/api-reference/esri-widgets-Bookmarks.html 44

require([
"esri/Map",
"esri/views/MapView",
"esri/layers/FeatureLayer",
"esri/layers/TileLayer",
"esri/widgets/Bookmarks",

], function (Map, MapView, FeatureLayer, TileLayer, Bookmarks) {JS CODE GOES HERE}

const bookmarks = new Bookmarks({
view: view,

});
view.ui.add(bookmarks, {

position: "top-right",
});

The Bookmarks module allows for the creation of
bookmarks using the Bookmarks() method. Once it
is generated, it will need to be added to the view
using the same method as that used for the basemap
gallery.

44

Locate Button Widget

https://developers.arcgis.com/javascript/latest/api-reference/esri-widgets-Locate.html 45

require([
"esri/Map",
"esri/views/MapView",
"esri/layers/FeatureLayer",
"esri/layers/TileLayer",
"esri/widgets/Locate",

], function (Map, MapView, FeatureLayer, TileLayer, Locate) {JS CODE GOES HERE}

var locateBtn = new Locate({
view: view,

});

view.ui.add(locateBtn, {
position: "top-left",

});

This example is for the locate widget. Note that a
locate widget will only be able to obtain your
location after asking permission. Locations for
desktop machines are generally based on the
location of your local network, so may not be very
accurate. The widget will use the GPS location when
the app is used on a mobile device.

45

Layer List Widget

https://developers.arcgis.com/javascript/latest/api-
reference/esri-widgets-LayerList.html 46

require([
"esri/Map",
"esri/views/MapView",
"esri/layers/Layer",
"esri/widgets/LayerList",

], function (Map, MapView, Layer,
LayerList) {JS CODE GOES HERE}

view.when(function () {
const layerList = new LayerList({
view: view,

});

view.ui.add(layerList, "top-right");
});

A layer list widget allows the user to view a list of
operational layers and turn the layers on and off. It
is made available by the LayerList module.

Note the use here of the when() method applied to
the view object. This is used to indicate that the
layer list should load after the map view loads and is
an example of a callback.

46

Legend Widget

https://developers.arcgis.com/javascript/latest/api-reference/esri-widgets-Legend.html 47

require([
"esri/Map",
"esri/views/MapView",
"esri/layers/FeatureLayer",
"esri/widgets/Legend",

], function (Map, MapView, FeatureLayer, Legend) {JS CDOE GOES HERE}

view.when(function () {
const legend = new Legend({
view: view,
layerInfos: [

{
layer: featureLayer,
title: "",

},
],

});

view.ui.add(legend, "bottom-right");
});

The Legend widget from the Legend module will
place a legend on the map. You can specify what
layers to reference and a main title to display.

Note that symbology and labels set up with a
renderer will be used in the legend also.

47

Layer List + Legend Widget

https://developers.arcgis.com/javascript/latest/api-reference/esri-widgets-LayerList.html 48

require([
"esri/Map",
"esri/views/MapView",
"esri/layers/Layer",
"esri/widgets/LayerList",

], function (Map, MapView, Layer, LayerList) {JS CDOE GOES HERE}

const layerList = new LayerList({
view: view,
listItemCreatedFunction: function (event) {
const item = event.item;
if (item.layer.type != "group") {

item.panel = {
content: "legend",
open: true,

};
}

},
});

view.ui.add(layerList, "top-right");

In this example, a layer list and legend are
combined into a single widget using the
listItemCreateFunction argument.

48

Sketch Widget

https://developers.arcgis.com/javascript/latest/sample-
code/sketch-geometries/index.html 49

require([
"esri/widgets/Sketch",
"esri/Map",
"esri/views/MapView",
"esri/layers/FeatureLayer",
"esri/layers/TileLayer",
"esri/layers/GraphicsLayer",
"esri/widgets/LayerList",

], function (
Sketch,
Map,
MapView,
FeatureLayer,
TileLayer,
GraphicsLayer,
LayerList

) {JS CODE GOES HERE}

const layer = new GraphicsLayer({ title:
"Drawings" });

const map = new Map({
basemap: "osm",
layers: [naip, featureLayer, layer],

});

view.when(function () {
const sketch = new Sketch({
layer: layer,
view: view,

});

view.ui.add(sketch, "bottom-right");
});

This shows how to insert sketching tools into the
map view using the GraphicsLayer module. Note
that the drawn features will be written into a layer
called layer that was created using the
GraphicsLayer method as opposed to writing into an
existing layer.

49

Measurement Widget

https://developers.arcgis.com/javascript/latest/sample-
code/widgets-measurement-2d/index.html

50

This slide links to an example of adding a
measurement widget that includes the ability to
measure length and area. This functionality is
provided by the DistanceMeasurement2D and
AreaMeasurement2D modules.

50

Print Widget

https://developers.arcgis.com/javascript/latest/api-
reference/esri-widgets-Print.html 51

require([
"esri/Map",
"esri/views/MapView",
"esri/layers/FeatureLayer",
"esri/widgets/Print",

], function (Map, MapView, FeatureLayer,
Print) {JS CDOE GOES HERE}

view.when(function () {
const print = new Print({
view: view,
// specify your own print service
printServiceUrl:

“URL",
});
view.ui.add(print, "top-right");

});

This example is for a print widget. Note that this
widget needs to link to a service that will be used to
render the image or PDF. Here, I am using a service
provided by ESRI.

51

Expand Widget

https://developers.arcgis.com/javas
cript/latest/api-reference/esri-
widgets-Expand.html 52

require([
"esri/Map",
"esri/views/MapView",
"esri/layers/FeatureLayer",
"esri/layers/TileLayer",
"esri/widgets/LayerList",
"esri/widgets/Expand",
"esri/widgets/BasemapGallery",

], function (
Map,
MapView,
FeatureLayer,
TileLayer,
LayerList,
Expand,
BasemapGallery

) {JS CDOE GOES HERE}

const llist = new LayerList({
view: view,
container: document.createElement("div"),

});

const bgExpand = new Expand({
view: view,
content: llist,
expandIconClass: "esri-icon-zoom-out-fixed",
collapseIconClass: "esri-icon-zoom-in-fixed",

});

view.ui.add(bgExpand, "top-right");

Expand widgets are used to store other widgets. You
can click on the icon to expand the tool or hide it
within the widget. They are very useful for saving
space.

To set up an expand widget, you will first need to
generate the widget that it is meant to contain. You
do not need to add this to the map.

Once the expand widget is generated, you will
specify the content as the other widget. Note that
you can also change the widget icons used.

52

Swipe Widget

53

const swipe = new Swipe({
leadingLayers: [naip],
trailingLayers: [samb],
position: 35,
view: view,

});
view.ui.add(swipe);

The Swipe widget can be used to swipe between two
raster tile layers for comparison.

You can change the initial starting location of the
swipe bar and its orientation in the map space.

53

Video: Widgets

54

54

Adding Additional Content With Divs

55

<style>
html,
body,
#viewDiv {
padding: 10px;
margin: auto;
height: 100%;
width: 100%;
max-width: 600px;
max-height: 600px;
background-color: #37363d;

}

.otherCont {
padding: 10px;
margin: auto;
background-color: #37363d;
min-height: 70px;
color: #e3874f;
text-align: center;

}
</style>

<body>
<div class="otherCont">

<h1>This is a header above the map.</h1>
<p>This is a paragraph above the map.</p>

</div>
<div id="viewDiv"></div>
<div class="otherCont">

<p>This is a paragraph below the map.</p>
</div>

</body>

When designing a web app that includes a map, you
can include additional content. In this example, I
have provided a header over the map and some text
content below the map. This is done with HTML.
So, it is easy to built a page and style content with a
map object embedded in one of the <divs>.

55

More Examples

https://developers.arcgis.com/javascript/la
test/sample-code/index.html

56

For more examples, please consult the API
examples and documentation.

56

This is the end of this lecture module.

Please return to the West Virginia View
Webpage for additional content.

Thanks! Hope you found this useful.

57

