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CNNs
Geospatial Deep Learning

Presenter Notes
Presentation Notes
Now that you have an understanding of ANNs and DL broadly, we will move on to investigate a specific type of DL that has shown great promise in the object-detection, computer vision, and image labelling fields. Convolutional neural networks (CNNs) allow for the analysis of image data. In this section, we will specifically focus on problems that require an image to be labeled as a representation of a category. We will not explore pixel-level classification or semantic segmentation. That will be explored in later modules.

https://commons.wikimedia.org/wiki/File:Earth_Western_Hemisphere_transparent_background.png#filelinks


Scene Classification of  SAT-6 Dataset with CNN (PyTorch/Python/R)

SAT-6 Dataset

YouTube Video

Paper 

Example

https://github.com/maxwell-
geospatial/wvview_geodl_exampleshttps://www.kaggle.com/crawford/deepsat-sat6

https://csc.lsu.edu/~saikat/deepsat/

https://youtu.be/nmRKUynZnc4

Basu, S., Ganguly, S., Mukhopadhyay, S., DiBiano, R., Karki, 
M. and Nemani, R., 2015, November. Deepsat: a learning 
framework for satellite imagery. In Proceedings of the 23rd 
SIGSPATIAL international conference on advances in 
geographic information systems (pp. 1-10).
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Presenter Notes
Presentation Notes
We have provided one example that uses CNNs for scene classification on our GitHub page. Please see the GitHub page and associated YouTube video. This example makes use of the SAT-6 dataset and relies on PyTorch, Python, and R. 

https://github.com/maxwell-geospatial/wvview_geodl_examples
https://www.kaggle.com/crawford/deepsat-sat6
https://csc.lsu.edu/%7Esaikat/deepsat/
https://youtu.be/nmRKUynZnc4


Introduction to Convolution
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What is Convolution?

CNNs or ConvNets

Learn spatial patterns 
and context

Based on moving 
windows

Apply moving 
windows to create 
feature maps
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Presenter Notes
Presentation Notes
Convolutional neural networks, ConvNets, or CNNs are a sub-type of DL ANNs that allows for the incorporation of spatial patterns into the learning process. Instead of just learning weights associated with links between neurons, the ANN can also learn weights to build a moving window or kernel that is passed over the image to manipulate the data and learn spatial patterns and abstractions. Once the filter or moving window is learned, it is used to alter the values in the array and produce a feature map. The basic idea behind CNNs is to learn spatial patterns at different scales. This type of DL has led to many of the recent (i.e., over the last decade) improvements in computer vision. 



Moving windows, kernels, neighborhood analysis

Examples in GIS = Focal Statistics, Majority Filter, Pixel Aggregation

Examples in Remote Sensing = Texture, Edge Detection, Sharpening, 
Blurring, Statistical Filters, Focal Analysis

Convolution in Geospatial Science

-1 -2 -3 -2 -1

-2 -3 -4 -3 -2

0 0 0 0 0

2 3 4 3 2

1 2 3 2 1
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Presenter Notes
Presentation Notes
As a geospatial scientist or professional, you are likely already familiar with the concept and use of moving windows, as they are commonly applied to raster data, including images, to manipulate the data in some way. Such techniques are termed moving window analysis, kernel-based analysis, or neighborhood analysis. For example, in GIS focal statistics allows for the calculation of a statistical measure within local windows while majority filter is used to generalize data by returning the most commonly occurring value in a local neighborhood. Pixel aggregation is used to decrease spatial resolution by merging cells.In remote sensing, moving windows are used to calculate textural measures, such as the measures after Haralick, detect edges, sharpen or blur images, and calculate local statistics. Moving windows are a key component of working with raster data and images in general. For example, many digital photo effects make use of moving windows. The example on the slide represents a Sobel filter that is used to highlight edges in a particular direction. 
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Convolution in Geospatial Science
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Presenter Notes
Presentation Notes
Here are some examples of window-based tool in remote sensing. Note here that users can define their own filters by changing the values in the filter array or the shape or size of the array. The key difference between these uses of filters and ConvNets is that the CNN learns these values or weights as part of the training process as opposed to the user defining them manually. 



1D Convolution

Time, spectral reflectance, 
audio signals, elevation

2D Convolution

Images

3D Convolution

Point clouds, voxels

Convolution Types
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Presenter Notes
Presentation Notes
There are different types of convolution operations that can be performed on tensor data. 1D convolution can be used to learn patterns in a single dimension, such as patterns over time, in spectral reflectance curves, in audio signals, and in elevation data. In GIS and remote sensing 1D convolution is sometimes used for time series analysis and spectral analysis of hyperspectral data. 3D convolution allows for convolution to be applied in 3 dimensions. These types of operations are useful for analyzing 3D point clouds, such as LiDAR, and voxels, which are raster grids extended into 3 dimensions as cubes. In this course, we will focus on 2D convolution, which is applied in two dimensions. This type of convolution can be used to explore patterns in raster-based data, such as images, occurring in the spatial dimensions: height and width. 



CNN Building Blocks
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CNN Building Blocks

3 5 1 7

5 6 3 6

1 3 1 1

2 4 2 1

6 7

4 2

w1,1 w2,1 w3,1

w1,2 w2,2 w3,2

w1,3 w2,3 w3,3

(2) Learn weights 
to build kernels

(1) Input image chips (4) Activation 
functions for 
non-linearity

(3) Max pooling to 
learn at multiple 
scales

Presenter Notes
Presentation Notes
CNNs are generally built using a fairly simple set of operations or components including 2D convolutional, max pooling, and activation layers. In the following slides, we will explore these different components of CNN architectures. 



Apply convolution to input layer/learn kernel in window
Kernel Size
3 x 3
5 x 5

Filters
Number of filters to learn to generate feature maps

Strides
Padding
Input Shape = (samples, channels, rows, cols)
Output Shape = (samples, filters, new rows, new cols) 

2D Convolutional Layers
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Presenter Notes
Presentation Notes
One of the key layer types in 2D convolution is the 2D convolution layer. The learned filters are commonly a 3x3 or 5x5 array of weight values that are trainable. Other sizes are possible; however, these sizes are most common. When setting up a 2D convolution layer, you will need to define the kernel size, the number of filters learned, the stride, and whether to apply padding.The kernel size specifies the size of the window while the number of filters represents the number of filters that are learned. For example, an input image with three bands could be processed using 64 learned filters to generate 64 feature maps or data abstractions. The stride is how much the filter moves as it passes over the image. If the stride is set to 1, then no pixels will be skipped and the output array size in the spatial dimensions will be maintained. Using a stride greater than 1 will result in decreasing the size of the array. However, it is more common to apply a pooling operation as opposed to increasing the stride as a means to reduce the size of the array in the spatial dimensions.Cells at the margin of the image may not have a full set of neighbors to fill the extent of the kernel. So, if only cells that have a full set of neighbors are processed, then this will result in decreasing the size of the array in the spatial dimensions. To maintain the array size, padding can be added to the margins of the image. 



Reduce network instability and avoid gradient 
explosion

Normalize output to minimize the impact of very large 
weights

Maintain balance in weights

Keep data normalized throughout the network

Can train the batch normalization parameters (g and b)

Increase training speed

Reduces overfitting

Can use a larger learning rate

Occurs on a batch-by-batch basis

Batch Normalization
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z = (x – mean)/std

(z * g) + b

Presenter Notes
Presentation Notes
Batch normalization is generally used to minimize overfitting in convolutional neural networks. Batch normalization is used to normalize the learned weights and prevent the activation or signal from becoming extremely large or small, a problem known as gradient explosion. This maintains balance in the weights, keeps the data normalized, and can increase training speed and convergence time. It is also commonly used instead of dropouts. The normalized weights can then be augmented using a coefficient (g) and an offset (b), which are both trainable. In CNNs specifically, it is common to apply 2D batch normalization after every 2D convolution layer in the network. You can also apply 1D batch normalization within the fully connected component of the network. 



Apply activation function to model 
nonlinear relationships

ReLU is a common choice

Layer Activation
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Presenter Notes
Presentation Notes
Different activation functions can be applied following the 2D convolution layers and 2D  batch normalizations. It is common to use ReLU or a similar method, such as Leaky ReLU or Parameterized ReLU. Remember that ReLU converts all negative activations to 0 and maintains all positive activations. It is a simple means to add non-linearity to the process. As mentioned in prior modules, if “dying ReLU” is an issue in your network, it would be good to experiment with Leaky ReLU or Parameterized ReLU. 
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Order of Operations

Convolution ActivationBatch Normalization

Presenter Notes
Presentation Notes
Within the sequence of operations, it is commonly preferred to apply batch normalization before applying the activation function. You will see this put into practice in the PyTorch modules. 



Reduces size of tensor in row and column 
dimensions by taking the max value in a 
windows

2 x 2 window

Allow for learning patterns at different 
spatial scales for context

Common to use stride of (2,2)

Max Pooling

3 5 1 7

5 6 3 6

1 3 1 1

2 4 2 1

6 7

4 2
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Presenter Notes
Presentation Notes
Once the filter weights are learned, they are applied to the image as a moving window to generate feature maps. In order to learn patterns in the spatial dimensions at different scales, the size of the array in the spatial dimensions needs to be reduced before it is used as input to the next convolution layer. Without this reduction in size, it would not be possible for the CNN to learn patterns at different scales. This is commonly accomplished using max pooling layers. Max pooling consists of applying a 2x2 moving window to the data and returning the maximum value from the 4 cells. An example of such an operation is shown on the slide. It is also common to use a stride of (2,2), which will result in halving the size of the array in the spatial dimensions. Other operations can be used to reduce the size of the array, such as mean pooling. However, max pooling has been shown to be useful and is the most common method used. As mentioned above, increasing the stride of the 2D convolution operations will also decrease the size of the array. However, pooling operations are generally used instead. However, some architectures, such as ResNet, will use a stride of 2 in some of the 2D convolution layers as opposed to pooling to decrease the size of the array in the spatial dimensions. 



Convert a multi-dimensional array to a 
1D vector

Vector will be fed into a fully connected 
layer

Flattening
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Presenter Notes
Presentation Notes
Once the convolution operations have been performed over multiple hidden layers, the data then need to be flattened to a 1D tensor (or vector) as input to fully connect layers. This 1D tensor becomes the input features, which have been learned at multiple spatial scales, that act as input to the final classification performed by the network using the fully connected layers. The size of the 1D tensor will depend on (1) the number of feature maps generated by the final 2D convolution layer and (2) the size of the final array in the spatial dimensions following the series of max pooling operations. Since the size of the array prior to flattening will vary based on the number of max pooling operations performed and the input height and width of the image, this means that the architecture will require the input images to have the same size. In short, the requirement for consistent input heights and widths is a product of flattening the array prior to the fully connected component of the model. 



Layers expecting a vector (1D tensor)

Occur after convolutional layers and flattening

Can incorporate 1D batch normalization and an 
activation function (ReLU)

Can incorporate dropouts

Final dense layer can use a sigmoid activation 
for binary classification or a softmax activation 
for multiclass classification

Fully Connected Layers
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Presenter Notes
Presentation Notes
A CNN’s ultimate goal is to label the image as belonging to a certain category. So, the end of the process involves using fully connected or dense layers that accepted a 1D vector or tensor and are used to perform classification. Depending on the loss metric being used, the final fully connected layer can return logits or the logits can be passed through an activation function. A sigmoid activation function is used when a single logit is returned for a binary classification problem, resulting in an estimated probability of the sample being an example of the positive case. For a multiclass classification, a softmax activation can be used to obtain probabilities for each class. These probabilities will sum to 1. 
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Feature Maps

w1,1 w2,1 w3,1

w1,2 w2,2 w3,2
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w1,2 w2,2 w3,2

w1,3 w2,3 w3,3

w1,1 w2,1 w3,1
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w1,2 w2,2 w3,2

w1,3 w2,3 w3,3

w1,1 w2,1 w3,1

w1,2 w2,2 w3,2

w1,3 w2,3 w3,3

w1,1 w2,1 w3,1

w1,2 w2,2 w3,2

w1,3 w2,3 w3,3 KernelsIris Feature Maps

Presenter Notes
Presentation Notes
This slide visualizes some feature maps derived by multiplying the input image or prior feature maps by the kernels and associated learned weights. Again, the goal here is to model useful spatial information that can aid in the classification. By incorporating max pooling, spatial patterns can be learned at different scales. Note the degradation of the image resolution in later feature maps. This is the central idea behind CNNs. Learning weights associated with kernels allows for creating spatial abstractions of the data that can be useful for differentiating classes. 
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CNN Structure

3,128,128

64,128,128

256,32,32

128,64,64
.91

512,16,16

.09

Feature Maps, Height, Width

Batch Norm (2D or 1D)
ReLU

Max Pool (2x2, Stride=2)

Flatten

Fully Connected

2D Conv (3x3, Stride = 1)

Softmax

Input

* Array sizes assume padding is used

Presenter Notes
Presentation Notes
Let’s now bring all of these concepts together to explore the complete architecture of a simple CNN. This CNN accepts images with 3 channels and a height and width of 128 pixels. An image is then passed to a 2D convolution layer that learns 64 filters that are applied to the input image to generate 64 feature maps. The 2D convolutional layer uses a kernel size of 3x3, a stride of 1, and a padding of 1 so that the size of the array in the spatial dimensions is not changed by the operations. The resulting feature maps then pass through a 2D batch normalization layer and a ReLU activation function to add non-linearity. Max pooling is used to reduce the size of the array in the spatial dimensions by half using a kernel size of 2x2 and a stride of 2. After these steps, the array now has a shape of (64,64,64).The data then pass through the following layers:2D Convolution (kernel = 3x3, stride=1, padding=1)  2D Batch Normalization  ReLU  Max Pooling (kernel = 2x2, stride=2) 2D Convolution (kernel = 3x3, stride=1, padding=1)  2D Batch Normalization  ReLU  Max Pooling (kernel = 2x2, stride=2) 2D Convolution (kernel = 3x3, stride=1, padding=1)  2D Batch Normalization  ReLUAfter this sequence of operations are applied, the array will have a size of (512,16,16). This array will then be flattened to a 1D vector with a length of 131,072 (512X16X16). The flattened data are then passed through the following sequence:Fully Connected  1D Batch Normalization  ReLU  Fully ConnectedThe first fully connected layer will have an input size equal to 131,072. Its output size will be the input size for the last fully connected layer. The last fully connected layer will output two logits, one for each class. Note that this could also be designed to output one logit in the case of a binary classification. If 1 logit is predicted, then it can be passed through a sigmoid activation to obtain a probability for the positive case. If two or more probabilities are predicted, then they can be passed through a softmax to obtain probabilities that sum to 1. In this example, the image of my cat Peri is predicted to be a picture of a cat with a 0.91 probability as opposed to a picture of a dog. 
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CNN Architectures

(Bands, Height, Width)  (Feature Maps 1, Height/2, Width/2)  (Feature Maps 2, 
Height/4, Width/4)  (Feature Maps 3, Height/8, Width/8)  (Feature Maps 4, 
Height/16, Weight/16)  Flatten  (Feature Maps 4 * Height/16 * Weight/16, Fully 
Connected 1)  (Fully Connected 2, Number of Classes) 

(3, 128, 128)  (8, 64, 64)  (16, 32, 32)  (32, 16, 16)  (64, 8, 8)  Flatten 
(4096, 1024)  (1024, 10) 

Blue = Input
Green = 2D Convolution + ReLU + Batch Norm (Size=3x3, Stride=1, Padding=1 or “same”)
Red = Max Pooling (Size = 2x2, Stride=2)
Purple = Flatten Tensor to 1D
Orange = Fully Connected Layers + ReLU + Batch Norm
Yellow = Fully Connected

* Array sizes assume padding is used

Presenter Notes
Presentation Notes
Here is a series of steps that outlines another simple CNN architecture. The 2D convolution layers are used to learn filters that are then applied to the input image or prior feature maps to create new feature maps. All kernels have a size of 3x3, a stride of 1, and padding to maintain the size of the array in the spatial dimensions. After each 2D convolution except the last, 2D batch normalization and a ReLU activation is applied. The max pooling operations, with a window size of 2x2 and a stride of 2, halve the size of the array in the spatial dimensions. After the convolutional component of the model, the array is flattened to a 1D vector. The data are passed through a fully connected layer followed by 1D batch normalization and a ReLU activation function. The last fully connected layer has an output size of 10, representing 10 differentiated classes. The resulting 10 logits can be converted to probabilities that sum to 1 using softmax. 



Settings and Considerations
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Common to use 3x3 or 5x5

Patch Size

w1,1 w2,1 w3,1

w1,2 w2,2 w3,2

w1,3 w2,3 w3,3

w1,1 w2,1 w3,1 w4,1 w5,1

w1,2
w2,2 w3,2 w4,2 w5,2

w1,3
w2,3 w3,3 w4,3 w5,3

w1,4
w2,4 w3,4 w4,4 w5,4

w1,5 w2,5 w3,5 w4,5 w5,5
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Presenter Notes
Presentation Notes
Let's talk about some specifics associated with using CNNs and 2D convolution layers. First, you can change the size of the moving window or kernel. It is common to use a 3x3 or a 5x5 window. Within these windows, each cell represents a weight that can be learned. It is also possible to insert zeros into the kernel to allow for learning patterns between cells that are not directly adjacent. We will discuss this later in the context of semantic segmentation. 



Number of filters, kernels, or weight matrices learned to apply to input 
to obtain new feature masks

Generally, increases as you move through network

(3, 128, 128)  (64, 128, 128,)  (128, 64, 64) 

(256, 32, 32)  (512, 16, 16)

Number of Filters

22* Array sizes assume padding is used

Presenter Notes
Presentation Notes
You can also change the number of filters learned. It is common to increase the number of filters as you move through the network and the input array becomes smaller in the height and width dimensions. The input of a 2D convolution layer will be the feature maps produced from the prior layer that have then been aggregated using max pooling. As the size of the CNN architecture increases, the number of kernels and associated weights will increase, resulting in more trainable parameters. It is not uncommon for CNNs to contain millions of trainable parameters. This can cause an issue with overfitting if the training dataset is small and/or no methods are used to minimize overfitting. 



How far widow shifts as it moves over the image

Generally, use a stride of 1 so that each pixel is the center of 
a window

Strides greater than 1 will downsample image

Tend to use max pooling with stride of 2 to downsample

Stride
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Presenter Notes
Presentation Notes
Stride relates to how far the moving window shifts in the x- and y- directions as it moves over the image. If a stride of (1,1) is used, then each cell or pixel in the array will be the center of the moving window. If a stride larger than (1,1) is used, then this will decrease the size of the array. It is generally preferable to use max pooling as opposed to a larger stride to reduce the number of rows and columns in the data array. Generally, we will use a stride of (1,1) for convolutional layers since we do not want to change the size of the array in the spatial dimensions. In contrast, a stride of (2,2) is often used for max pooling because we want to reduce the size of the array in the spatial dimensions. 



Edge pixels do not have full set of 
neighbors

Results in reduction of number of rows 
and columns in resulting feature map

Can use padding to obtain same 
number of rows and columns

Common to pad with zeros

Padding

0 0 0 0 0 0

0 3 5 1 7 0

0 5 6 3 6 0

0 1 3 1 1 0

0 2 4 2 1 0

0 0 0 0 0 0
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Presenter Notes
Presentation Notes
Edge cells or pixels will not have a full set of neighbors. If only full windows are used, then the output size following the application of the convolution and feature maps will be smaller than the input in the height and width dimensions. To alleviate this issue, arrays can be padded with zeros in order to maintain the image size following the convolution operations. This is demonstrated for the corner pixel in the pictured array.



Assuming 3x3 window and input spatial dimensions of 512x512

(512, 512)  (254, 254)  (127, 127)
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CNN Architecture without Padding

Presenter Notes
Presentation Notes
Again, if padding is not applied, then only cells that have a full set of neighbors will be maintained after the learned kernels are applied to create feature maps. This slide provides an example of spatial dimensions when 2D convolution is applied to an image with original spatial dimensions of 512x512, a kernel size of 3x3, and no padding. 



Overfitting
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Limited number of training samples

Large ANN

Many trainable parameters

Poor ANN design

Training for too many epochs

What causes overfitting?
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Presenter Notes
Presentation Notes
As with all deep learning methods, overfitting is an issue for CNNs. This is especially true if the number of training samples is limited, the CNN is large and there are many trainable parameters, the architecture is poorly designed, and/or the model is trained for a large number of epochs or iterations through the data. 



Reduce network instability and avoid gradient 
explosion

Normalize output to minimize the impact of very large 
weights

Maintain balance in weights

Keep data normalized throughout the network

Can train the batch normalization parameters (g and b)

Increase training speed

Reduces overfitting

Can use a larger learning rate

Occurs on a batch-by-batch basis

Batch Normalization
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z = (x – mean)/std

(z * g) + b

Presenter Notes
Presentation Notes
Batch normalization is generally used to minimize overfitting in convolutional neural networks. As mentioned in the prior modules, batch normalization is used to normalize the learned weights and prevent the activation or signal from becoming extremely large or small, a problem known as gradient explosion. This maintains balance in the weights, keeps the data normalized, and can increase training speed and convergence time. It is also commonly used instead of dropouts. In CNNs specifically, it is common to apply 2D batch normalization after every 2D convolution layer in the network and 1D batch normalization after all fully connected layers other than the final. 



Add random noise to data

Generate more variety and 
more samples

Common when working with 
images

Augmentations:
Rotate/Flip
Blurring/Sharpening
Contrast
Crop/Pad
Stretch/Distort
Brightness/Saturation/Hu

e
Shift/Zoom

Data Augmentation

29

Presenter Notes
Presentation Notes
One common means to combat overfitting in CNNs is to augment the image data. A wide variety of data augmentations can be applied including rotation/flips; blurring and sharpening; contrast alterations; cropping and padding; stretching and distortion; changing the brightness, saturation, and/or hue; and shifting or zooming within the array.Generally speaking, data augmentation is a good idea when training CNN-based architectures. The example on the slide represents random rotations and flips of some digital terrain data. 



Original

Hue Saturation Flip Brightness
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Image Augmentation

Presenter Notes
Presentation Notes
This slide provides some example alterations of an image. 



Minimize overfitting by 
“dropping out” or 
ignoring neurons in the 
network

Often between 0.5 and 
0.8

Can take longer for 
model to stabilize or 
converge

Dropouts
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Presenter Notes
Presentation Notes
As discussed in the prior module, dropouts can also be used to potentially reduce overfitting. However, it is currently recommended to use batch normalization as opposed to dropouts. 



Start with weights learned from a larger training dataset

Refine weights using new data

Transfer Learning

http://www.image-net.org/

https://cocodataset.org/#home
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Presenter Notes
Presentation Notes
As mentioned in earlier modules, it is also possible to initialize your model with weights learned from another, larger dataset, such as ImageNet or COCO. The idea here is that images contain some common, basic features and spatial patterns, so starting from these pre-trained weights will generally be better than starting from random weights, even if your classification problem is different from the original problem. This can even be true if the defined classes are different. 

http://www.image-net.org/
https://cocodataset.org/#home


Early stopping

Learning rate schedulers

Changing loss functions

Custom training loop augmentations
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Others

Presenter Notes
Presentation Notes
As discussed in the prior module, there are some other methods that can be used to potentially improve model performance. These include stopping the training process early to prevent overfitting, adjusting the learning rate during the learning process, using a different loss function (e.g., Dice, Tversky, or focal Tversky), and applying other customizations to the training loop, such as gradient accumulation. 



Creating Image Chips

34



Define shape: (3, 512, 512), (3, 256, 256), (3, 128, 128), etc. 

Common formats: JPEG, PNG, TIFF

Labels: class label for each image (use numeric codes to 
represent classes)

Image Chips
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Presenter Notes
Presentation Notes
Before training a CNN model, you will need to develop training, validation, and testing data of a defined size. Some common sizes are listed on this slide. Note that larger tensors will require more memory and computational resources to process. You will also have to feed in smaller batches. The maximum batch size will depend on the size of the chips, architecture of the CNN, and GPU memory available. Using multiple GPUs or having more VRAM available generally allows for larger batch sizes. In GIS and remote sensing, it is common to work with large raster grids. These large grids will need to be divided into small image chips to feed into the DL model. Common raster formats for generating image chips include JPEG, PNG, and TIFF. Since the goal is to predict labels or classes for each example, you will also need to provide the labels associated with each image for training, validation, and testing. 



Using ArcGIS Pro

https://pro.arcgis.com/en/pro-app/tool-reference/image-
analyst/export-training-data-for-deep-learning.htm

https://developers.arcgis.com/python/api-
reference/arcgis.learn.html 36

Presenter Notes
Presentation Notes
ArcGIS Pro provides the Export Training Data for Deep Learning Tool that can be used to create image chips for training, testing, and validation. This tool can also be accessed via ArcPy and the arcgis.learn module. It requires a valid Spatial Analyst or Image Analyst extension license.

https://pro.arcgis.com/en/pro-app/tool-reference/image-analyst/export-training-data-for-deep-learning.htm
https://developers.arcgis.com/python/api-reference/arcgis.learn.html


Using QGIS

https://github.com/PratyushTripathy/QGIS-Plugin-
Produce-Training-Samples-For-Deep-Learning 37

Presenter Notes
Presentation Notes
Plugins have also been developed for QGIS to generate image chips. This provides an open-source and free alternative to ArcGIS Pro. 

https://github.com/PratyushTripathy/QGIS-Plugin-Produce-Training-Samples-For-Deep-Learning
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R

Presenter Notes
Presentation Notes
It is also possible to produce custom scripts to generate image chips. As part of this class, I will demonstrate an R function that my lab group built that can generate chips from geospatial data. This function makes use of the terra R package. 



Architectures
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Pre-defined architectures

Examples = ResNet, DenseNet, InceptionNet, EfficientNet, MobileNet, 
DPN, VGG

Different version of underlying architecture with varying numbers of 
layers or operations: ResNet-18, ResNet-34, ResNet-50, ResNet-101, 
ResNet-152

Allow for application of pre-trained weights

Can reduce training time and overfitting

Consider when using small training set

Architectures
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Presenter Notes
Presentation Notes
Since the development of CNNs, a variety of architectures have been proposed with varying components and designs. Some examples are listed on this slide. For common architectures, such as those listed here, it is common for trained models to already be available which were trained using large databases, such as ImageNet or COCO. When a limited set of training data are available, it might be useful to initiate a model using these pre-trained weights. This can be true even if the images being analyzed and the classes being differentiated are different between the original and current use case. For example, a model for classifying aerial images into different land cover types could be initiated using ImageNet weights, even though this dataset consists of photographs. The weights can then be adjusted by learning from the new data, which can be more efficient than training from random weights. This can also help reduce overfitting. If you design a new architecture for a problem, you could generate weights from ImageNet, COCO, or some other dataset. However, you would need to undertake this training process yourself, which can be very memory intensive since the datasets are so large. This highlights the value of using existing architectures with pre-trained weights. Note that the use of existing architectures and pre-trained weights can be limiting. For example, the model may only accept 3-band images since it was originally trained on 3-band data. However, there are methods available to edit or generalize models. Some of these method will be demonstrated in the PyTorch modules. 



ResNet

He, K., Zhang, X., Ren, S. and Sun, J., 2016. Deep residual learning for 
image recognition. In Proceedings of the IEEE conference on computer 
vision and pattern recognition (pp. 770-778)

DenseNet

Iandola, F., Moskewicz, M., Karayev, S., Girshick, R., Darrell, T. and 
Keutzer, K., 2014. Densenet: Implementing efficient convnet descriptor 
pyramids. arXiv preprint arXiv:1404.1869.

Architecture Examples
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Presenter Notes
Presentation Notes
This and the following slide provide citations for some commonly used architectures. 



InceptionNet

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, 
D., Vanhoucke, V. and Rabinovich, A., 2015. Going deeper with 
convolutions. In Proceedings of the IEEE conference on computer vision 
and pattern recognition (pp. 1-9).

VGG

Simonyan, K. and Zisserman, A., 2014. Very deep convolutional networks 
for large-scale image recognition. arXiv preprint arXiv:1409.1556.

Architecture Examples
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AlexNet
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Krizhevsky, A., Sutskever, I. and Hinton, G.E., 2017. Imagenet
classification with deep convolutional neural 
networks. Communications of the ACM, 60(6), pp.84-90.

Presenter Notes
Presentation Notes
We will now explore a few famous architectures as examples. We will begin with AlexNet, which was released in 2012 and help to spur the interest in CNNs for image labeling tasks. This model consists of the following steps:2D Conv  Max Pooling  2D Conv  Max Pooling  2D Conv  2D Conv  2D Conv  Max Pooling  Flatten  Fully Connected  Fully Connected
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VGGNet-16
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VGG-16

Presenter Notes
Presentation Notes
VGGNet-16 has the architecture diagrammed above. Similar to other CNNs, it consists of a few fairly simple building blocks: 2D convolution, max pooling, activation functions, and fully connected layers. Even though the original VGGNet-16 did not include batch normalization layers, later modifications added these. VGGNet-16 has a large number of trainable parameters: more than 100 million!
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ResNet
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ResNet-18
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https://towardsdatascience.com/understanding-
and-visualizing-resnets-442284831be8

Projection
Connection

Presenter Notes
Presentation Notes
It would make sense that increasing the size, complexity, and/or number of layers in a CNN would result in improved model performance due to the ability to model more complex relationships and abstract the data to a greater degree. However, it has been found that this is not the case. Larger networks can lead to overfitting, especially when the training dataset is not large. Perhaps more problematic, when networks get very large, early layers are very separated from later layers, which can result in very small or infinitely small gradients. This is known as the vanishing gradient problem. This can result in the model being very difficult to train effectively. Thus, researchers hit a wall as continuing to increase the depth of the CNN architecture proved to be problematic. One solution to this problem was introduced by the ResNet architecture. The idea here is to use shortcut connections in which some layers skip past components of the model and are merged back in at a later point by simple addition. This allows for less separation between earlier layers and later layers and reduces the impact of the vanishing gradient problem. In other words, it provides a shorter path for the gradients. The diagram on this page conceptualizes a ResNet-18 architecture. The first component is 2D convolution with a kernel size of 7x7 and a stride of 2. This if followed by a max pooling operation with a stride of 2. Both operations will decrease the size of the array in the spatial dimensions. This is then followed by a series of 2D convolution operations, some of which have a stride of 2 while others have a stride of 1. When a stride of two is used, the size of the array is decreased in the spatial dimensions. This serves a similar purpose to max pooling in other CNN architectures explored here. Within the convolutional component of the model, the gray and red arrows represent the shortcut connections. A gray arrow indicates an identity shortcut connection in which the output is simply added to the arrays at the new location in the model. A red arrow indicates a projection shortcut connection in which a technique is used to decrease the size of the array in the spatial dimensions. This is required so that the data that is skipping over some of the steps has the same spatial dimension sizes as the data to which is it being added. There are multiple means to accomplish this. One option is to use 2D convolution with a kernel size of 1x1 and a stride of 2.The last phase of the model consists of average pooling. Note that this can be replaced with adaptive average pooling, which allows the model to accept images with different sizes in the spatial dimension. A final fully connected layer is then used to perform the classification. There are actually a variety of ResNet architecture with varying number of layers: ResNet-18, -34, -50, -101, and -152. 

https://towardsdatascience.com/understanding-and-visualizing-resnets-442284831be8
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Shortcut Connections
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Presenter Notes
Presentation Notes
This slide conceptualizes the two types of shortcut connections used within the ResNet architecture. When the size of the spatial dimensions of the current data and the data that are being fed through the shortcut are the same, there is no need to alter the size of the array and the data can simply be added together. This is known as an identity shortcut connection. When the arrays that are to be merged have different sizes in the spatial dimensions, the data being fed along the shortcut path must be resized to match the other data. This type of shortcut is called a projection shortcut connection. There are several ways to accomplish this resizing. One option is to use a 2D convolution layer with a kernel size of 1x1 and a stride of 2. 



Pre-trained weights from large datasets (ImageNet and COCO)

Initialize model (common backbones) on pre-trained weights

Pre-trained Weights

http://www.image-net.org/

https://cocodataset.org/#home
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Presenter Notes
Presentation Notes
Again, one of the benefits of using a common architecture, such as AlexNet, VGGNet-16, or a ResNet, is that large datasets, such as ImageNet and COCO, have been used to train these models. The associated weight/parameter sets can then be used to initialize the model as opposed to initializing them randomly. This can allow for the model to be applied to new data with potentially less overfitting. In the PyTorch modules, I will demonstrate how to implement transfer learning using these pre-trained models and common architectures. 

http://www.image-net.org/
https://cocodataset.org/#home
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torchvision

https://pytorch.org/vision/stable/index.html
https://pytorch.org/vision/stable/models.html

Model architectures
Examples: AlexNet, DenseNet, EfficientNetV2, 

MobileNetV3, ResNet, ResNeXt, VGG

Pre-trained weights

Presenter Notes
Presentation Notes
The torchvision package provides access to several common architectures and pre-trained weights for these architectures. We will investigate this package in the PyTorch modules. 

https://pytorch.org/vision/stable/index.html
https://pytorch.org/vision/stable/models.html


Using pre-trained weights may 
require a certain number of bands

Can be an issue for multispectral 
data

Possible to alter model architecture

Number of Bands

49

Presenter Notes
Presentation Notes
Again, using pre-trained weights and existing architectures may require you to conform to the existing structure. For example, you may need to provide 3-band data since the network was originally trained on RGB data. There are ways to overcome this issue, such as replacing the first convolution layer with a new one that accepts the correct number of inputs. It is also common to have to replace or alter the fully connected layer(s) when the number of differentiated classes vary from the original implementation. 



This is the end of this lecture module. 

Please return to the West Virginia View 
Webpage for additional content. 

Presenter Notes
Presentation Notes
Thanks! Hope you found this useful. 
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