
Image from NASA:
https://commons.wikimedia.org/wiki/File:Earth_Wester
n_Hemisphere_transparent_background.png#filelinks

JavaScript

Client-Side Web GIS

In the previous modules, we discussed defining web
content using HTML and styling pages using CSS
and Bootstrap. These technologies do not offer
many options for interactions on a webpage, other
than clicking on links or using pseudo selectors.

Website functionality and interactions are generally
defined using JavaScript; further, web mapping
APIs are generally built in JavaScript (for example,
the ArcGIS Maps SDK for JavaScript and the Leaflet
JavaScript API). So, for web development and web
mapping JavaScript is an important skillset.

Note that JavaScript and Java are separate

1

programming languages that are not related to each
other. JavaScript is a general purpose, object-
oriented coding language that has been adopted for
client-side web programming.

In this module, we will also discuss GeoJSON,
which offers a method to store geospatial data that
can be read and manipulated with JavaScript.

This module will focus on the basics of the
JavaScript language. The following module will
explore how JavaScript is used to add interaction to
webpages and to manipulate the document object
model (DOM).

1

Preparation and Resources

2

2

W3schools

https://www.w3schools.com/default.asp

3

Additional JavaScript resources are available on the
w3schools.com webpage.

3

4

Documentation

https://developer.mozilla.org/en-US/docs/Web/JavaScript

The Mozilla free software community, which also
maintains the Firefox web browser, provides
documentation for the JavaScript language.

4

Ctrl + Shift + I (Chrome or Firefox)

Can execute JavaScript from the Console

Can use for debugging

Developer Tools

5

Where can you execute and experiment with
JavaScript?

One option is to use the development tools
associated with your web browser.

In this course, we will use the Developer Tools made
available in Google Chrome or Firefox. Specifically,
JavaScript can be executed using the Console.

5

6

RunJS

https://runjs.app/

RunJS is another great tool for learning and
experimenting with JavaScript. We will not use it in
this course.

6

7

Video: Intro to JavaScript

7

Variables, Arithmetic, and Logic

8

8

Start with var, let, or const

= is used for assignment

End line with ;

Can hold numbers or strings

"" or '' around strings

Can declare and assign in same
statement

Can declare then assign in a
second line

You can declare multiple
variables in one statement

Variable names:
must begin with a letter, $, or

_
Can contain letters, digits,

underscores, and dollar signs
Names are case sensitive
Reserved words cannot be used

Declaring and Assigning Variables

9

let x = 2;
let y = "Google Earth Engine";
let z = "2";
let x;
x = 2;

A variable is simply a container for or a reference to
data (numbers, strings, dates, images, videos, etc.).
By creating variables, you can then work with your
data using JavaScript and its associated methods
and functions.

This slide highlights some key characteristics of
variables specific to JavaScript. First, a variable is
declared using the var, let, or const reserved
keywords. You can declare a variable and assign
data to it in one line of code or declare and assign in
separate lines of code. Assignment is done using a
single equals sign.

9

All JavaScript statements should end with a
semicolon (similar to a period at the end of a
sentence), including variable declarations and
assignments. Generally, JavaScript is forgiving if
you forget to include semicolons; however, it is
considered good and standard practice to include
them.

When a variable will store a number, you do not put
quotes around the number. When you are assigning
text, strings, or numbers that should be treated as
strings to a variable, you must include single- or
double-quotes.

It is also possible to declare multiple variables at
once or on a single line. The declarations are
provided in one line and separated with commas.

There are some rules for variable names. Variables
must begin with a letter, $, or _. You cannot start a
variable with a number. Names are case sensitive
(so, x and X would be considered different
variables). There are some reserved words that have
special uses and meaning in JavaScript (for
example, var). So, they cannot be used as variable
names.

Lastly, it is standard practice to use camel case for

9

variable names (for example, myMap or
myMapObj) where words are merged together and
the first word is not capitalized. This is not required
but is considered a standard amongst JavaScript
coders and web developers.

9

10

console.log()

console.log(x);
console.log(y);
console.log(z);

You will see console.log() used a lot in JavaScript.
This is a function that prints something to the
console in the web browser. In other words, it allows
you to return a result to the console. It is used
similar to print() in other commonly used
languages.

10

Local Scopes: variables are declared within a function
and can only be called in the function

Global Scope: variables are declared outside of a
function and can be called anywhere in the code

Scope

11

When working with variables, functions, and
scripts, it is important to understand the difference
between local and global scope.

When a variable is defined inside of a function, it is
not available for use outside of the function. Thus, it
has local scope and can only be used or referenced
within the function.

In contrast, global scope allows for the variable to be
used anywhere in the script and requires that the
variable is defined outside of a function.

In short, where a variable is defined in a script can

11

impact how and where it can be used. If you need to
use a variable outside of a function, you will need to
define it before the function is executed so that it
has global scope.

11

12

var, let, const

var x = 1;
let y = 1;
const z = 1;

Declaration
Keyword

Scope Re-Declared/Update Hoisting

var
Global when declared outside of a

function; local when declared inside
of a function

Yes/Yes
Hoisted to top of

scope and initialized
as undefined

let
Global when declared outside of a

block; local when declared inside of a
block

No/Yes
Hoisted to top of

scope but not
initialized

const
Global when declared outside of a

block; local when declared inside of a
block

No/No
Hoisted to top of

scope but not
initialized

Prior to the most recent release of JavaScript
ES2015 (ES6), variables were generally declared
using the var keyword. However, this is now
generally discouraged. Instead, variables should be
declared with let or const.

When a variable is declared using the var keyword,
it has global scope when declared outside of a
function and local scope when declared inside of a
function. It can be re-declared and updated.
Hoisting means that the declaration of the variable
is moved to the top of the scope in which it exists.
Variables defined using var are hoisted and
initialized with a value of undefined.

12

In contrast to var, variables declared using let
cannot be re-declared; however, they can be
updated. They are also hoisted, but they are not
initialized as undefined when declared. They have
global scope when declared outside of a block and
local/block scope when declared inside of a block. A
block is code occurring within curly brackets, such
as inside of a function or loop.

Variables declared with const are similar to those
declared with let except that they cannot be re-
declared or updated. These are generally used when
the variable is meant to remain constant or not
manipulated or updated.

We will use let and const in this course and avoid
using var.

12

13

Video: Variables

13

Comments are meant for humans, and will not be executed by the
machine

Comment your code!!!!

Comments

14

//Comment one own line
const x = 4; //Comment after code
/*
Multi-line
comment.*/

Similar to HTML and CSS, comments can be
included with JavaScript in a JavaScript file (.js) or
in a <script> tag within an HTML document.

This slide shows how to define single-line and
multi-line comments.

It is generally a good idea to comment your code, as
this aids in interpretability for later use. Also, lines
of code can be “commented out” in the process of
debugging or diagnosing errors.

14

15

Video: Comments

15

Strict Mode

16

https://www.w3schools.com/js/js_strict.asp

You can run JavaScript code in strict mode by
including “use strict” at the top of the script. The
goal of this mode is to cause bad syntax to result in
errors as opposed to running the poorly formatted
code. You can read more about strict mode at the
provided link.

16

Arithmetic Operators

Operator Use

+ Addition

- Subtraction

* Multiplication

** Exponentiation

/ Division

% Modulus

++ Increment

-- Decrement

17

All coding languages need to be able to perform
arithmetic or mathematical operations on numeric
data.

This slide shows the defined arithmetic operators
for JavaScript specifically.

You may not be familiar with the concept of
modulus. This is used to return the remainder after
division. For example, 3%2 would yield 1 since there
is a remainder of 1 when dividing 3 by 2.

Increment and decrement are used to increase or
decreased a value incrementally.

17

Arithmetic

18

let x = 11;
let y = 7;
let z = x + y;
console.log(z);

let x = 11;
let y = 7;
let z = x - y;
console.log(z);

let x = 11;
let y = 7;
let z = x * y;
console.log(z);

let x = 11;
let y = 7;
let z = x / y;
console.log(z);

let x = 11;
let y = 7;
let z = x % y;
console.log(z);

let x = 11;
let y = 7;
let z = x ** y;
console.log(z);

let x = 5;
x++;
let z = x;
console.log(z);

let x = 5;
x--;
let z = x;
console.log(z);

This slide provides some examples of arithmetic
operations using JavaScript.

Please work through each of these examples and
make sure you understand how and why the result
was obtained.

Note here that all variables are declared using the
let keyword and each line of code ends with a
semicolon.

18

19

Video: Operators

19

Assignment

20

let x = 2;
x += 3;
console.log(x);

let x = 2;
x -= 3;
console.log(x);

let x = 2;
x *= 3;
console.log(x);

let x = 2;
x /= 3;
console.log(x);

let x = 2;
x %= 3;
console.log(x);

It is also possible to perform a mathematical
operation and automatically assign the result back
to the original variable.

In the first column, I am adding 3 to 2 and saving
the answer (5) back to the variable x. I then subtract
3 from 2 and save the result (-1) back to the variable
x.

In the second column, I am multiplying 2 by 3 and
saving the result back to x. Next, I divide by 3.
Lastly, I return the modulus.

20

21

Video: Variable Assignment

21

Comparison Operators

Operator Use

== Equal to

=== Equal value and equal type

!= Not equal to

!== Not equal value or not equal type

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

22

Comparison operators are used to compare values
or values stored in separate variables and include
equal to (==), not equal to (!=), greater than (>),
greater than or equal to (>=), less than (<), and less
than or equal to (<=).

The result will be a Boolean value of true or false
depending on whether the comparison is logically
true or logically false.

Note that == is used as opposed to = for
comparison. This is because = is used for variable
assignment, so it cannot also be used for
comparison without ambiguity.

22

It is also possible to test if data have both the same
value and the same data type. For example, if one
variable stores the value 1 as a number and another
variable stores the value”1” as a string, == would
yield true while === would yield false, since they
have the same value but a different data type.

22

Logical Operators

Operator Use

&& And

|| Or

! Not

23

To include multiple tests, multiple comparisons can
be strung together using logical operators.

AND (&&): Both criteria must be true
OR (||): One of two criteria or both criteria must be
true
NOT (!): One criteria but not the other must be true

There is no defined symbol for XOR (A OR B, but
NOT A AND B) in JavaScript. However, this logic
could be coded if necessary.

23

24

Video: Comparison and Logical Operators

24

Data Types

25

25

Numbers

Strings

Array

Data Types

26

let x = 2;
let y = 1.2;

let x = "Remote Sensing";
let y = "1";

let a = ["GIS", "Remote Sensing", "Cartography"];

let a = ["text", 1, true, [1,2,3]];

We will now discuss the data types available in
JavaScript.

Numbers store a single number that is treated like a
number (for example, mathematical operations can
be performed on the value).

Strings store text or numbers that are treated as text
(1 vs. “1”).

Both numbers and strings can only store a single
feature: one number or one string.

Arrays allow for storing multiple data points as a

26

single variable. Arrays use square brackets, and
commas are used to separate each data point. Note
that you can store different data types within an
array.

26

27

Video: Numbers and Strings

27

Print string

Print string using template literal

28

Printing Strings

x = "Geog"
y = 455
z = "Remote Sensing"
console.log("The name of the course is " + x + " " + y + ": " +
z + ".");

x = "Geog"
y = 455
z = "Remote Sensing"
console.log(`The name of the class is ${x} ${y}: ${z}.`);

Strings can be combined then logged to the console
using the plus sign. Note that spaces within quotes
will be included in the generated or printed
statement while those outside will not.

Although this works fine, the syntax can be difficult
to read and not concise. Another means to print a
string is to use a template literal. In a template
literal, variables are referenced using ${}. This is
similar to the concept of an f-string in Python.

28

29

Video: String Concatenation and Printing

29

Indexing starts at 0 as opposed to 1.

Indexing for Arrays

30

let a = ["text", 1, true, [1,2,3]];
let a1 = a[0];
let a2 = a[1];
let a3 = a[2];
let a4 = a[3][0];
console.log(a1);
console.log(a2);
console.log(a3);
console.log(a4);

That indexing for JavaScript arrays start at 0 as
opposed to 1. So, the first element in the array has
an index of 0 and the second has an index of 1.

It is common for programming languages to index
this way. For example, Python indexing also starts
at 0.

30

31

Video: Arrays

31

Boolean

Object

Data Types

32

let x = true;
let y = false;

let course = {
code: "Geog",
number: 456,
name: "Remote Sensing Applications"

};

The Boolean data type indicates logical true or
logical false. Note that the standard is to use lower
case and you cannot include quotes. If quotes are
included, then the data would be treated as a string
(true vs. “true). You can also store a set of Boolean
values in an array.

An object allows for the storage of different data
types within the same variable. For example, an
object can store numbers, strings, arrays, and other
objects. We will talk about objects in more detail
later in the module.

32

33

Video: Boolean

33

34

Video: Objects

34

35

Checking data types

let x = 1;
let y = "1";
let z = true;
let a = [1,2,3,4];

let obj = {
code: "Geog",
number: 456,
name: "Remote Sensing Applications",
courseTitle: function () {
return this.code + " " + this.number + ":"

+ " " + this.name;
},

};

function abmult(a, b) {
return a * b;

}

console.log(typeof x);
console.log(typeof y);
console.log(typeof z);
console.log(typeof a);
console.log(typeof a[0]);
console.log(typeof obj);
console.log(typeof obj.name);
console.log(typeof abmult);
console.log(typeof obj.courseTitle);

The typeof keyword can be used to return or
determine the data type of a variable.

35

36

Video: Check or Get Data Type

36

Types are dynamic for a variable

Strings can be written in double or single quotes

Numbers written in quotes will be treated as strings

If you have quotes as part of the string, use the other type of quote to define
the object as a string

Numbers can be written using scientific notation

Arrays require square brackets

Objects are written with curly brackets

Objects have properties

Functions are available to convert between data types

Data Types

37

Here are some general notes on data types in
JavaScript.

First, data types are dynamic for a variable. This
means that the variable x can store a number then
be redefined to store a string.

When defining strings, you must use double- or
single-quotes. If a number is written in quotes, it
will be treated like a string (for example,
mathematical operations could not be performed on
it). If you use quotes within a string (for example,
sharks with ‘laser” beams attached to their heads),
use the other quote type to define the string (for

37

example, let drEvil = “sharks with ‘laser’ beams
attached to their heads”).

Numbers can be written using scientific notation
(for example, 3.2e3).

Arrays always use square brackets while objects use
curly brackets. We will discuss objects in more
detail later in the module.

37

Numbers
Translate to Boolean true: any non-zero number
Translate to Boolean false: 0, NaN, null, undefined

Strings
Translate to Boolean true: any non-empty string
Translate to Boolean false: an empty string

38

Truthy and Fasly

In JavaScript, truthy values are those that will yield
true when converted to a Boolean. For numbers,
this includes all numbers except 0. For strings, this
includes all non-empty strings. Falsy values are
those that yield false when converted to a Boolean.
This includes the number zero, empty strings, NaN
(not a number), null, and undefined.

38

Function do something when called

Functions can be assigned a name and they accept parameters

In order to execute a function, you will provide arguments for each
parameter

Return statements are used to stop the function and have it return
something

Variables declared within a function are local variables

Functions

39

function abmult(a, b) {
return a * b;

}

let x = abmult(4, 7);

Functions are designed to do something when
called. There are functions built into JavaScript and
additional functionality provided by JavaScript
libraries. You can also define your own functions.

Functions generally accept user-defined arguments
or parameters and return something. A new
function can be defined using the function keyword
with a list of parameters defined within parentheses.
What the function does is defined inside of curly
brackets.

In the example on this slide, a function is defined
called “abmult” that will accept two arguments. The

39

function will then return the product of the
provided numbers. Once the function is defined, it
can be used by calling the function name and
providing the required arguments.

Note that variables defined within functions can
only be used within the function as opposed to
anywhere in the script. In other words, they have
local scope.

39

Arrow Functions

40

let abmult = (a, b) => a*b;

let x = abmult(4, 7);

Arrow functions provide a means to declare simple,
one-line functions using a concise syntax. This is
similar to lambda functions in Python.

40

41

Video: Functions

41

Objects allow you to associate
many values with a single
variable

Values are written as name:value
pairs called properties

Breaks are not important

Access properties:
course.code
course["code"]

Working with Objects

42

let course = {
code: "Geog",
number: 456,
name: "Remote Sensing Applications"

};

console.log(course.code);
console.log(course["code"]);

We will now discuss JavaScript objects in more
detail. First, objects are defined using curly
brackets.

Within the object, data are defined as name and
value pairs, which are collectively called properties.

To access a specific property, you can call the object
name followed by a period and the property name.
Alternatively, you can use square brackets as
demonstrated on the slide.

In the example, an object is declared called course.
This object holds three properties with the names

42

code, number, and name. Two of the variables hold
a text string while the other holds a number.

If we wanted to subset out just the course number,
this could be accomplished using course.number or
course[“number’].

Object notation is used extensively in JavaScript
and by web mapping APIs. So, you will get used to
seeing a lot of curly brackets in the examples and in
your code.

42

Methods are actions that
can be performed by objects

Methods are stored in
properties as function
definitions

this is a keyword that means
the property from this object

Access a method:
course.courseTitle()

Call without () will return
the function definition

Working with Objects

43

let course = {
code: "Geog",
number: 456,
name: "Remote Sensing Applications",
courseTitle: function () {

return this.code + " " +
this.number + ":" + " " + this.name;

},
};

console.log(course.courseTitle());

Objects can also store functions as a property.
Functions stored or associated with an object are
generally called methods and define actions that can
be performed by or on objects.

In this example, a method called “courseTitle” is
defined. The function function is then used to define
what the method does. In this case, it returns the
entire course title.

To use the method, you will need to call it along
with the object name: course.courseTitle(). If you
would like to return the function definition, then do
not include the parenthesis: course.courseTitle.

43

Methods are meant to be applied only to objects to
which they are assigned. They cannot be used or
applied to other objects.

Again, I think of these as functions tied to a specific
object.

Note the use of the keyword this. This indicates a
property from the object to which the method is
defined. In the example, the properties code,
number, and name are being obtained from the
current object.

43

44

Video: Methods

44

Blueprint for objects of the same type

Use constructor method to create a new object of this class

Pre-defined methods, properties, and options to work with for:
Creation
Interaction
Events
Get, set, and change settings and options

JavaScript Classes

45

When using web mapping APIs, you will work with a
variety of pre-defined classes that have associated
methods to handle creation, interaction, events, and
setting and changing options.

Classes provide pre-defined templates for working
with and handling types of objects, such as web
maps or spatial layers.

45

Backslash (\) escape
character turns special
characters into string
characters

Working with Strings

46

let x = 'That\'s mine!';

This is a special note on escape characters. If you
must use a special character within a string, this
could cause the string to be misinterpreted.

On this slide, a contraction is used, which contains a
single quote. This would cause the variable
assignment to fail since there are three single
quotes.

To alleviate this issue the backslash escape
character can be placed before the special character.
This will indicate to treat it as text and not a special
character, thus alleviating any ambiguity.

46

Working with Strings

Operation Use

length Returns string length

indexOf() Returns index of first occurrence of specified text

lastIndexOf() Returns the index of the last occurrence of a specified test in a string

search() Search for specified value and returns the index

slice() Returns a portion of a string

substring() Like slice() but cannot accept negative indexes

substr() Like slice() but can specify length

replace() Replaces a specified value with another value

toUpperCase() Converts to upper case

toLowerCase() Converts to lower case

concat() Joins two or more strings

charAt() Returns character as a specified index

split() Convert string to an array

https://www.w3schools.com/js/js_string_methods.asp 47

Different data types have methods defined by
JavaScript that can be applied to them. This slide
provides some examples for string objects.

In the next slide, I will provide some specific
examples.

The w3chools.com link included on this slide
provides additional examples and descriptions of
string methods.

47

Working with Strings

48

let text1 = "Remote Sensing Applications";
console.log(text1.length);
console.log(text1.replace("Applications", "App"));
console.log(text1.split(" "));
console.log(text1.toUpperCase());
console.log(text1.slice(7, 14));

Note that methods are applied by calling them after
the variable name to which they are meant to be
applied. Parentheses must be included, even if no
arguments are provided or required.

So, the general form is: variable.method(argument1,
argument2).

Work through these examples and make sure you
understand how they are applied and why the
specific result is obtained.

48

49

Video: String Methods

49

Working with Numbers

Operation Use

toString() Convert number to string

toExponential() Returns a string using exponential notation with rounding

toFixed() Returns a string with specified number of decimal places

toPrecision() Returns a string of a specific length

valueOf() Returns a number as a number

Number() Returns a number

parseFloat() Returns floating point number

parseInt() Returns integer number

https://www.w3schools.com/js/js_number_methods.asp

50

This slide provide some example methods for
number-type variables.

Use the w3schools.com link provided to see
additional examples and explanations.

50

Working with Numbers

51

let num1 = 3;
console.log(typeof num1.toString());
let num2 = 3445892;
console.log(num2.toExponential());
let num3 = 3.56321893;
console.log(num3.toFixed(3));
console.log(typeof num3.toFixed(3));
console.log(typeof Number(num3.toFixed(3)));

Work through the examples on this slide and make
sure you understand why and how the specific
results were obtained.

As a note for the toFixed() method, this method is
used to round off a number to a defined number of
decimal places. However, the number will be
converted to a string. So, in the last line, I wrap this
process in the Number() function, which will
convert the string back to a number.

51

52

Video: Number Methods

52

Math Object Methods

Method Description

abs(x) Returns the absolute value of x

acos(x) Returns the arccosine of x, in radians

asin(x) Returns the arcsine of x, in radians

atan(x) Returns the arctangent of x as a numeric value between -PI/2
and PI/2 radians

atan2(y, x) Returns the arctangent of the quotient of its arguments

ceil(x) Returns the value of x rounded up to its nearest integer

cos(x) Returns the cosine of x (x is in radians)

exp(x) Returns the value of E
x

floor(x) Returns the value of x rounded down to its nearest integer

https://www.w3schools.com/js/js_math.asp

53

The Math object is commonly used to perform
mathematical operations with JavaScript.

This slide provides some examples of different
operations available.

53

Math Object Methods

Method Description

log(x) Returns the natural logarithm (base E) of x

max(x, y, z, ..., n) Returns the number with the highest value

min(x, y, z, ..., n) Returns the number with the lowest value

pow(x, y) Returns the value of x to the power of y

random() Returns a random number between 0 and 1

round(x) Returns the value of x rounded to its nearest integer

sin(x) Returns the sine of x (x is in radians)

sqrt(x) Returns the square root of x

tan(x) Returns the tangent of an angle

https://www.w3schools.com/js/js_math.asp

54

This slide provides some additional examples of
different Math object methods.

54

55

Math Object

https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Math

console.log(Math.PI);
console.log(Math.E);

console.log(Math.trunc(3.8));
console.log(Math.ceil(3.8));
console.log(Math.floor(3.8));
console.log(Math.round(3.8));
console.log(Math.random(3.8));
console.log(Math.abs(-8.1));
console.log(Math.sqrt(8.1));

Here, I provide some syntax examples that make
use of the Math object. Note that the properties
(examples in the first column) and functions
(examples in the second column) are all prefixed
with Math.

55

56

Video: Math Object

56

Working with Arrays

Operation Use

join() Joins all array elements into a string

pop() Removes the last element from an array

push() Adds a new element to end of an array

shift() Removes first array element

unshift() Adds new element to an array at the beginning

splice() Add new items to an array at specified index

concat() Merges arrays into a new array

slice() Slices out a piece of an array

toString() Convert array to string

reverse() Sorts an array alphabetically

Math.max.apply() Find the highest number in an array

Math.min.apply() Find the lowest number in an array

https://www.w3schools.com/js/js_array_methods.asp
57

This slide provides example methods for arrays.

The w3schools.com link provides additional
examples.

57

Working with Arrays

58

let arr1 = ["Geography:", "456", "Remote", "Sensing",
"Applications"];

console.log(arr1.join(" "));
arr1.push("Spring", "2019");
console.log(arr1);
arr1.reverse();
console.log(arr1);
let numarr = [1, 3, 5, 8, 9];
console.log(Math.max.apply(null, numarr));

Work through these examples and make sure that
you understand how the results were obtained.

58

Working with Arrays

Operation Use

forEach() Calls a function once for each array element

map() Creates a new array by performing a function on each array element

filter() Creates a new array from elements that pass a test

reduce() Runs a function on each array element to produce a single value

reduceRight() Like reduce() but works from right-to-left

every() Check if all array values pass a test

some() Check if some array values pass a test

indexOf() Search an array for an element value and returns its position

lastIndexOf() Like indexOf() but starts are the end of an array

find() Returns the value of the first array element that passes a test

findIndex() Like find() but returns the index

https://www.w3schools.com/js/js_array_methods.asp

59

This slide provides additional array methods and
examples.

59

Working with Arrays

60

let num1 = [3, 4, 5, 6, 7, 8];

function addone(value) {
return value + 1;

}
let num2 = num1.map(addone);
console.log(num2)

let num1 = [3, 4, 5, 6, 7, 8];
function addgt6(value) {

return value > 6;
}

let num2 =
num1.filter(addgt6);
console.log(num2);

let num1 = [3, 4, 5, 6, 7, 8];
function addgt6(value) {

return value > 6;
}
let num2 = num1.every(addgt6);
console.log(num2)

Here are some additional examples of working with
arrays.

The map() method is used to map a function to each
element in an array. In the first example, 1 is added
to each array element.

The filter() method is used to only return array
elements that meet a specific condition defined by a
function (in this case numbers will be returned to
the new array variable only if they are larger than
6).

The every() method will return a single Boolean

60

output for the entire array. If all array elements
meet the criteria, then true will be returned. If at
least one array element does not meet the criteria,
then false will be returned.

Please work through these examples and make sure
you understand them.

60

61

Video: Array Methods

61

Working with Dates

62

let date1 = new Date();
console.log(date1.getFullYear());
console.log(date1.getTime());
console.log(date1.getHours());
console.log(date1.getMonth());

let today = new Date();
let secondDate = new Date();
secondDate.setFullYear(2200, 11, 18);
console.log(today > secondDate);

Dates can be treated as a unique data type in
JavaScript and most other object-oriented
languages. So, data defined to the date type will not
be treated as numbers or strings, but specifically as
dates. Further, there are methods available for
working with dates specifically.

On this slide, I am creating a new object called data1
using the Date() function. Note the use of the “new
“keyword here. This keyword is generally used when
creating a variable using a constructor function, in
this case the Date() function.

The Date() function returns the current date and

62

time. For example, I obtained this date when
creating this module: Sat Apr 11 2020 17:18:57
GMT-0400 (Eastern Daylight Time).

Components of this date can be extracted using
different methods. As demonstrated on this slide, it
is possible to extract out the full year, time, hour,
and month. Note that getTime() returns the time in
milliseconds since the Unix Epoch Time (1-1-1970).

One of the complexities of working with dates is that
there are multiple formats available. Thus,
standardization can be an issue. If you would like to
learn more about working with dates in JavaScript
than what is covered here, please consult
w3schools.com, which provides a more in-depth
treatment of the topic.

62

Working with Dates

Operation Use

getFullYear() Get year from date (yyyy)

getMonth() Get month from date (0-11)

getDate() Get day as number from date (1-31)

getHours() Get hours from date (0-23)

getMinutes() Get minutes from date (0-59)

getSeconds() Get seconds from date (0-59)

getMilliseconds() Get milliseconds from date (0-999)

getTime() Get the time (milliseconds since January 1, 1970)

getDay (Get the weekday as a number (0-6)

Date.now() Get the time

https://www.w3schools.com/js/js_date_methods.asp

63

This slide provides some example methods applied
to Dates. Specifically, these are “get” methods that
allow you to extract out or get a portion of the date
data.

63

Working with Dates

Operation Use

setDate() Set the day as a number (1-31)

setFullYear() Set the year (optionally month and day)

setHours() Set the hour (0-23)

setMilliseconds() Set the milliseconds (0-999)

setMinutes() Set the minutes (0-59)

setMonth() Set the month (0-11)

setSeconds() Set the seconds (0-59)

setTime() Set the time (milliseconds since January 1, 1970)

https://www.w3schools.com/js/js_date_methods_set.asp

64

There are also “set’ methods for setting or changing
components of the date data.

64

Working with Booleans

65

let x = 3 > 9;
console.log(x);

let x = 2;
let y = "2";
console.log(x == y);
console.log(x === y);

This slide provides some examples of operations
that will return a Boolean value (true or false) based
on whether a condition is logically true or logically
false.

Remember that Booleans are their own data type.
They are not numbers or strings.

65

Control Flow, Loops, and Switches

66

66

Control Flow

67

let x = 8;
if (x < 10) {

console.log("Value is less than 10.");
}

let x = 12;
if (x < 10) {

console.log("Value is less than 10.");
}

x = 8;
if (x >= 10) {

console.log("Value is greater than or equal to 10.");
} else {

console.log("Value is smaller than 10.");
}

Before we move on from this introduction to
JavaScript, we need to discuss some common
programming language tasks and how they are
performed using JavaScript specifically.

We will discuss conditional statements, loops, and
switches.

This slide provides examples of conditional
statements or control flow. In the first example, a
new variable is declared, and the number 8 is
assigned to it.

I then set a condition using if. When setting up an if

67

statement, the statement in parentheses (x < 10)
must be a test that evaluates to true or false. If the
condition evaluates to true, then the code in curly
brackets is executed. If it is not true, then the code
does not execute, or nothing happens. Since 8 is less
than 10, the condition will evaluate to true, and the
string will be printed to the console.

If you want something to be executed or returned if
the condition evaluates to false, then you can
provide an else statement, as in the second example.

Note that the code to execute for “if” and “else” are
both written in curly brackets. No condition needs
to be defined for the “else” statement since this is
the default code to execute if the “if” condition
evaluates to false.

67

Control Flow

68

let x = 8;
if (x === 10) {

console.log("Value is 10.");
} else if (x < 10) {

console.log("Value is less than 10.");
} else {

console.log("Value is larger than 10.");
}

What if you want to have more than two potential
outcomes?

This can be accomplished by including one or
multiple else if statements.

The ”if” and all “else if” statements must include
conditions. Again, the “else” statement is the default
so does not require a condition.

The defined conditions should be mutually exclusive
so that an input can only evaluate to true for one of
the provided conditions or none of the provided
conditions.

68

In the example, if the value is 10, the output defined
by the if statement will be executed. If the condition
defined by if else evaluates to true, then that
statement will be executed (which would be the case
in this example). If none of the conditions evaluate
to true, or the value is larger than 10, code from the
else statement will be executed.

Note that you can have multiple “else if” statements.

68

Video: Control Flow

69

69

Switch

70

let x = "Four Stars";
let t;
switch (x) {
case "One Star":
t = "This is a One Star Restaurant.";
break;

case "Two Stars":
t = "This is a Two Star Restaurant.";
break;

case "Three Stars":
t = "This is a Three Star Restaurant.";
break;

case "Four Stars":
t = "This is a Four Star Restaurant.";
break;

case "Five Stars":
t = "This is a Five Star Restaurant.";
break;

default:
t = "Restaurant was not rated.";

}
console.log(t);

If you have a lot of conditions to test, using if, if else,
and else statements can be cumbersome. As an
alternative, you can use a switch. In a switch, each
condition is specified using the case keyword, code
to execute or text to print is defined for each case,
and each case ends with break. It is also common to
include a default if none of the cases evaluate to
true. Note the use of curly brackets.

In short, if you are testing multiple conditions, a
switch will likely require less code and be more
interpretable than the conditional statement that
would yield the same result.

70

Video: Switch

71

71

For Loop

72

for (i = 0; i < 10; i++) {
console.log("The value is " + i + ".");

}

for (i = 0; i < 10; i++) {
console.log(`The value is ${i}`);

}

What if you would like to perform a task repeatedly
for a set of data values? For example, what if you
want to multiply all the numbers in an array by the
same value or read in and process all the files from a
folder.

This can be accomplished with loops. We will begin
with a discussion of for loops. A for loop is designed
to execute a task for all elements in a set of
elements. The for loop can accept three statements.
The first statement is executed before entering the
loop. The second defines the condition for executing
the loop, and the last statement specifies what to do
once each iteration has been executed.

72

In the provided example, the variable i is set to 0
initially. Next, “The value is 0.” is printed to the
console. Next, 1 is added to 0 (to get 1), the loop is
executed again, and a new print statement is logged
(“The value is 1.”). This process continues until the
condition (the second statement) is not met. So, it
will execute until x reaches 10. At that point, the
loop is complete.

72

For Loop

73

let countries = ["Belgium", "Germany", "Iceland",
"Hungary", "Scotland"];

let i = 0;
let len = countries.length;
for (; i < len; i++) {

console.log("I would like to visit" + " " +
countries[i] + ".");
}

This is another example of a “for loop”. First, I am
creating a variable called countries that stores a set
of country names as strings in an array. I then
define a variable i and assign it the number 0. A
third variable (len) is assigned the number of
elements in the countries array.

The for loop is then used to loop through all the
countries in the array. Note that no initial condition
is defined or necessary, and “i” is used to specify the
index of each country in the array.

Why is the loop set to run until i is less than the
length of the array as opposed to less than or equal

73

to the length of the array? This is because JavaScript
starts indexing at 0 as opposed to 1. So, the last
element in the array has an index of n-1 as opposed
to n, where n is the number of elements in the array.

Note that for loops can be combined with control
flow to execute different sets of code depending on a
set of conditions.

73

74

For Loop + Flow Control

for (i = 0; i < 15; i++) {
if (i == 10) {

console.log("Value is 10.");
} else if (i < 10) {

console.log("Value is less than 10.");
} else {

console.log("Value is larger than 10.");
}

}

This code demonstrates combining a for loop and
control flow to allow for different results for each
iteration of the loop.

74

75

For Loop + Flow Control

a = [1,2,3,4,5,6,7,8,9];
let i = 0;
aLen = a.length;
for (; i < aLen; i++) {

if (a[i]%2 === 0){
console.log(`${a[i]} is even.`);

} else {
console.log(`${a[i]} is odd.`);

}
}

This example combines a for loop and flow control
to print whether a value is positive or negative. The
tests make use of modulus. Note the use of template
literals in the print statements.

75

76

Video: For Loop

76

77

continue

a = [1,2,3,4,5,6,7,8,9];
let i = 0;
aLen = a.length;
for (; i < aLen; i++) {

if (a[i]%2 === 0){
console.log(`${a[i]} is even.`);

} else {
continue;

}
}

Continue is used to skip an iteration of a loop. In the
example, odd values are skipped.

77

78

break

a = [1,2,3,4,5,6,7,8,9];
let i = 0;
aLen = a.length;
for (; i < aLen; i++) {

if (a[i]%2 === 0){
break;

} else {
console.log(`${a[i]} is odd.`);

}
}

In contrast to continue, break causes the loop to
stop. In the example, the loop stops when the first
even number is reached.

78

79

Video: Continue and Break

79

While Loop

Watch for infinite loops!!!!

80

let i = 20;
while (i > -1) {

console.log("The number is " + i);
i--;

}

let i = 0;
while (i < 20) {

console.log("The number is " + i);
i++;

}

Another loop option is the while loop. A while loop
will continue to execute until the condition is not
met.

For example, this loop will execute until i reaches
20. If we initiate i at 21, and 1 is added each time
using the increment defined in the loop (i++), then
the condition will always be met. So, the loop will
never stop. This is known as an infinite loop and is
an issue if while loops are not set up correctly. The
loop will continue until it is manually terminated or
the computer runs out of memory.

80

While Loop

81

let countries = ["Belgium", "Germany", "Iceland",
"Hungary", "Scotland"];
let i = 0;

while (countries[i]) {
console.log("I would like to visit" + " " +

countries[i] + ".");
i++;

}

This is another example of a while loop. In this case,
the loop will continue until it reaches an index (i)
that is not in the dataset.

81

Video: While Loop

82

82

Provides funti0nality to webpages

Allow webpages to accept input and respond or change in some way

Events

Event Description

onchange An HTML element has been changed

onclick The user clicks an HTML element

onmouseover The user moves the mouse over an HTML element

onmouseout The user moves the mouse away from an HTML element

onkeydown The user pushes a keyboard key

onload The browser has finished loading the page

<button onclick="this.innerHTML = Date()">The time is?</button>

83

One of the primary uses of JavaScript is to add
functionality to a webpage or define what should
happen as a result of a certain event.

For example, what should happen when a button is
clicked or a form is filled out?

In the context of web mapping, it is also used to
define the functionality of the map and map
elements.

We will discuss event handling and manipulation of
the document object model (DOM) using JavaScript
in the next section.

83

GeoJSON

84

84

JSON = JavaScript Object
Notion

Used to store and exchange
data

Text written with JavaScript
object notation

GeoJSON = allows you to
encode geographic structures

Used in web applications

One file can store multiple
geometry types

GeoJSON

http://geojson.org/

85

JSON stands for JavaScript Object Notation, which
was discussed earlier in the module. JavaScript is
capable of interacting with data provided in this
format.

Since JavaScript is the primary client-side web
programming language, JSON is often used to
represent data on the web or transfer data between
the client and server.

GeoJSON expands JSON to include geographic
features and spatial reference information. This is
one means to work with spatial data on the web.

85

A JSON file can store multiple geometry types
(points, lines, and polygons) in the same file.

The next set of slides provide some examples.

85

GeoJSON: Point

{
"type": "FeatureCollection",
"name": "json_point2",
"crs": { "type": "name", "properties": {
"name": "urn:ogc:def:crs:OGC:1.3:CRS84" }
},
"features": [
{ "type": "Feature", "properties": { "id": 1,
"attribute1": 1, "attribute2": "point1",
"attribute3": 0.1111 }, "geometry": { "type":
"Point", "coordinates": [-96.437, 37.283] } }
]
}

86

The text on this page represents the GeoJSON code
for the point shown on the map.

This file contains a feature type, a file name, a
coordinate reference system, or crs, definition, a list
of attribute names and values, and the x and y
coordinate representing the point.

This structure makes use of objects and arrays to
define this geographic feature as text or code.

86

GeoJSON: Point

{
"type": "FeatureCollection",
"name": "example_point",
"crs": { "type": "name", "properties": { "name":
"urn:ogc:def:crs:OGC:1.3:CRS84" } },
"features": [
{ "type": "Feature", "properties": { "id": 1, "attribute1": 1,
"attribute2": "point1", "attribute3": 0.1111 }, "geometry": { "type":
"Point", "coordinates": [-96.437, 37.283] } },
{ "type": "Feature", "properties": { "id": 2, "attribute1": 2,
"attribute2": "point2", "attribute3": 0.22222 }, "geometry": {
"type": "Point", "coordinates": [-83.006, 39.913] } },
{ "type": "Feature", "properties": { "id": 3, "attribute1": 3,
"attribute2": "point3", "attribute3": 0.33333 }, "geometry": {
"type": "Point", "coordinates": [-115.666, 43.247] } },
{ "type": "Feature", "properties": { "id": null, "attribute1": null,
"attribute2": null, "attribute3": null }, "geometry": { "type":
"Point", "coordinates": [-78.691, 40.501] } }
]
}

87

This example is similar to the previous one except
that this file now contains four points.

For each point, attributes and x and y coordinates
are provided.

87

GeoJSON: Line

{
"type": "FeatureCollection",
"name": "line_example",
"crs": { "type": "name", "properties": { "name": "urn:ogc:def:crs:OGC:1.3:CRS84" } },
"features": [
{ "type": "Feature", "properties": { "id": 1, "attribute1": 1, "attribute2": 1111, "attribute3": "line" }, "geometry": {
"type": "MultiLineString", "coordinates": [[[-118.903, 39.471], [-112.086, 41.188], [-105.957, 42.315], [-
97.718, 41.237], [-90.313, 39.030], [-85.458, 36.234], [-78.544, 38.883]]] } }
]
}

88

This example represents GeoJSON code for a line.

This is pretty similar to the code for point features,
except that the line is now represented as a series of
x and y coordinate pairs as opposed to a single
coordinate.

The attribute definition is the same as that for the
point.

88

GeoJSON: Polygon

{
"type": "FeatureCollection",
"name": "polygon_example3",
"crs": { "type": "name", "properties": { "name":
"urn:ogc:def:crs:OGC:1.3:CRS84" } },
"features": [
{ "type": "Feature", "properties": { "id": 1 },
"geometry": { "type": "MultiPolygon",
"coordinates": [[[[-101.2, 43.051], [-99.238,
45.111], [-99.238, 45.111], [-93.697, 46.239],
[-89.332, 42.463], [-88.254, 36.333], [-
92.275, 31.429], [-100.219, 32.312], [-
107.183, 36.235], [-105.809, 42.07], [-101.2,
43.051]], [[-99.581, 40.354], [-98.503,
34.371], [-93.501, 36.823], [-92.128, 39.373
], [-95.364, 41.923], [-99.581, 40.354]]]] }
}
]
}

89

This final example is the result for a polygon
feature.

Similar to a line feature, this polygon is defined
based on a set of coordinate pairs. The first and last
coordinate are identical so that the feature is closed.

This specific feature has an internal ring
representing a hole. This hole is defined by
coordinate pairs also.

89

Can export files to GeoJSON
format

Can create bounding box

Can set coordinate precision

QGIS can read and write many
file types

GeoJSON in QGIS

90

GeoJSON files are directly readable in the free and
open-source QGIS software.

Data can be read in, and other data types can be
saved to GeoJSON.

You can specify a bounding box as an extent and
also the coordinate precision. Reducing the number
of decimal values stored will decrease the file size.

One benefit of QGIS is that it can read in and
convert a wide variety of data types.

I often use QGIS as a data conversion tool for this

90

reason.

90

Video: GeoJSON with QGIS

91

91

This is the end of this lecture module.

Please return to the West Virginia View
Webpage for additional content.

Thanks! Hope you found this useful.

92

